Advertisement

CTLA-4 et Toll-like récepteurs: de nouvelles cibles en immunothérapie

  • R. Bedel
  • C. Borg
  • P. Saas
Part of the Oncologie pratique book series (ONCOLPRAT)

Abstrait

Plusieurs données cliniques suggèrent que la modulation des réponses immunitaires peut être une stratégie anti-tumorale efficace. Ládministration de BCG est reconnue comme un traitement efficace des cancers superficiels de la vessie. Par analogie avec les vaccinations contre certains pathogènes intracellulaires, des protocoles de vaccination ont utilisé le BCG comme adjuvant et permis ľobtention de résultats cliniques intéressants. Ľallogreffe de cellules hématopoïétiques a montré de longue date sa capacité à éradiquer des maladies leucémiques réfractaires aux traitements conventionnels. Récemment, ľintroduction des anticorps monoclonaux dans ľarsenal thérapeutique de ľoncologie médicale et de ľhématologie a étayé ľimportance du système immunitaire anti-tumoral. Ces résultats ont motivé un plus ample développement des bithérapies favorisant les réponses immunitaires anti-tumorales. Ainsi, nous aborderons ici les données fondamentales et cliniques concernant ľutilisation de ligands agonistes des récepteurs de la famille TOLL et des anticorps neutralisant la molécule CTLA-4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Stephen CL, Gough SCL, Walker L.S.K, Sansom DM (2005) CTLA4 gene polymorphism and autoimmunity. Immunol Rev 204: 102–15CrossRefGoogle Scholar
  2. 2.
    Lemaitre B (2004) The road to Toll. Nat Rev Immunol 4: 521–7PubMedCrossRefGoogle Scholar
  3. 3.
    Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045PubMedGoogle Scholar
  4. 4.
    Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13: 114–9PubMedCrossRefGoogle Scholar
  5. 5.
    Srivastava PK (2005) Immunotherapy for human cancer using heat shock proteinpeptide complexes. Curr Oncol Rep 7: 104–8PubMedCrossRefGoogle Scholar
  6. 6.
    Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425: 516–21PubMedCrossRefGoogle Scholar
  7. 7.
    Killeen SD, Wang JH, Andrews EJ et al. (2006) Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword? Br J Cancer 95: 247–52PubMedCrossRefGoogle Scholar
  8. 8.
    van Duin D, Medzhitov R, Shaw AC (2006) Triggering TLR signaling in vaccination. Trends Immunol 27: 49–55PubMedCrossRefGoogle Scholar
  9. 9.
    Huang B, Zhao J, Li H, et al. (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65: 5009–14PubMedCrossRefGoogle Scholar
  10. 10.
    Miggin SM, O’Neill LA (2006) New insights into the regulation of TLR signaling. J Leukoc Biol 80: 220–6PubMedCrossRefGoogle Scholar
  11. 11.
    Parker LC, Prince LR, Sabroe I (2007) Translational Mini-Review Series on Toll-like Receptors: Networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 147: 199–207PubMedGoogle Scholar
  12. 12.
    Sutmuller RP, Morgan ME, Netea MG, et al. (2006) Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27: 387–93PubMedCrossRefGoogle Scholar
  13. 13.
    Hopkins PA, Sriskandan S (2005) Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol 140: 395–407PubMedCrossRefGoogle Scholar
  14. 14.
    Schmausser B, Andrulis M, Endrich S, et al. (2005) Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol 295: 179–85PubMedCrossRefGoogle Scholar
  15. 15.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5: 987–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13: 816–25PubMedCrossRefGoogle Scholar
  17. 17.
    Seki E, Tsutsui H, Nakano H, et al. (2001) Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta. J Immunol 166: 2651–7PubMedGoogle Scholar
  18. 18.
    Tsan MF (2006) Toll-like receptors, inflammation and cancer. Semin Cancer Biol 16: 32–7PubMedCrossRefGoogle Scholar
  19. 19.
    Perabo FG, Muller SC (2004) Current and new strategies in immunotherapy for superficial bladder cancer. Urology 64: 409–21PubMedCrossRefGoogle Scholar
  20. 20.
    Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5: 471–84PubMedCrossRefGoogle Scholar
  21. 21.
    Miyazaki J, Kawai K, Oikawa T, et al. (2006) Uroepithelial cells can directly respond to Mycobacterium bovis bacillus Calmette-Guerin through Toll-like receptor signalling. BJU Int 97: 860–4PubMedCrossRefGoogle Scholar
  22. 22.
    Kelly MG, Alvero AB, Chen R, et al. (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66: 3859–68PubMedCrossRefGoogle Scholar
  23. 23.
    Klaffenbach D, Rascher W, Rollinghoff M, et al. (2005) Regulation and signal transduction of toll-like receptors in human chorioncarcinoma cell lines. Am J Reprod Immunol 53: 77–84PubMedCrossRefGoogle Scholar
  24. 24.
    Hassan F, Islam S, Tumurkhuu G, et al. (2006) Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide. BMC Cancer 6: 281PubMedCrossRefGoogle Scholar
  25. 25.
    Molteni M, Marabella D, Orlandi C, Rossetti C (2006) Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Letter 235: 75–83CrossRefGoogle Scholar
  26. 26.
    Li K, Chen Z, Kato N, et al. (2005) Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem 280: 16739–47PubMedCrossRefGoogle Scholar
  27. 27.
    Lang KS, Georgiev P, Recher M, et al. (2006) Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J Clin Invest 116: 2456–63PubMedCrossRefGoogle Scholar
  28. 28.
    Salaun B, Coste I, Rissoan MC, et al. (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176: 4894–901PubMedGoogle Scholar
  29. 29.
    Liew FY, Xu D, Brint EK, O’Neill LA (2005) Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5: 446–58PubMedCrossRefGoogle Scholar
  30. 30.
    Stockfleth E, Trefzer U, Garcia-Bartels C, et al. (2003) The use of Toll-like receptor-7 agonist in the treatment of basal cell carcinoma: an overview. Br J Dermatol 149 Suppl 66: 53–6PubMedCrossRefGoogle Scholar
  31. 31.
    Schulze HJ, Cribier B, Requena L, et al. (2005) Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled phase III study in Europe. Br J Dermatol 152: 939–947PubMedCrossRefGoogle Scholar
  32. 32.
    Speiser DE, Lienard D, Rufer N, et al. (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115: 739–46PubMedGoogle Scholar
  33. 33.
    Friedberg JW, Kim H, McCauley M, et al. (2005) Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon-alpha/beta-inducible gene expression, without significant toxicity. Blood 105: 489–95PubMedCrossRefGoogle Scholar
  34. 34.
    Pashenkov M, Goess G, Wagner C, et al. (2006) Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol 24: 5716–24PubMedCrossRefGoogle Scholar
  35. 35.
    Carpentier A, Laigle-Donadey F, Zohar S, et al. (2006) Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro-oncol 8: 60–6PubMedCrossRefGoogle Scholar
  36. 36.
    Byrd-Leifer CA, Block EF, Takeda K, et al. (2001) The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol 31: 2448–57PubMedCrossRefGoogle Scholar
  37. 37.
    June CH, Bluestone JA, Nadler LM, Thompson CDB (1994) The B7 and CD28 receptor families. Immunol Today 7: 321–31CrossRefGoogle Scholar
  38. 38.
    Egen JG, Allison JP (2002) Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16: 23–35PubMedCrossRefGoogle Scholar
  39. 39.
    Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14: 233–58PubMedCrossRefGoogle Scholar
  40. 40.
    Shiratori T, Miyatake S, Ohno H, et al. (1997) Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 5: 583–9CrossRefGoogle Scholar
  41. 41.
    Linsley PS, Bradshaw J, Greene J, et al. (1996) Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 6: 535–43CrossRefGoogle Scholar
  42. 42.
    Rudd CE, Schneider H (2003) Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat Rev Immunol 3: 544–6PubMedCrossRefGoogle Scholar
  43. 43.
    Lin H, Rathmell JC, Gray GS, Thompson CB, et al. (1998) Cytotoxic T Lymphocyte Antigen 4 (CTLA4) Blockade Accelerates the Acute Rejection of Cardiac Allografts in CD28-deficient Mice: CTLA4 Can Function Independently of CD28. J Exp Med 188: 199–204PubMedCrossRefGoogle Scholar
  44. 44.
    Masteller EL, Chuang E, Mullen AC, et al. (2000) Structural Analysis of CTLA-4 Function In Vivo. J Immunol 164: 5319–27PubMedGoogle Scholar
  45. 45.
    Marengere LE, Waterhouse P, Duncan GS, et al. (1996) Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272: 1170–3PubMedCrossRefGoogle Scholar
  46. 46.
    Schneider H, Prasad KV, Shoelson SE, Rudd CE (1995) CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J Exp Med 181: 351–5PubMedCrossRefGoogle Scholar
  47. 47.
    Chuang E, Fisher TS, Morgan RW, et al. (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13: 313–22PubMedCrossRefGoogle Scholar
  48. 48.
    Guntermann C, Alexander DR (2002) CTLA-4 suppresses proximal TCR signaling in resting human CD4+ T cells by inhibiting ZAP-70 Tyr319 phosphorylation: a potential role for tyrosine phosphatases. J Immunol 168: 4420–29PubMedGoogle Scholar
  49. 49.
    Calvo CR, Amsen D, Kruisbeek AM (1997) Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor σ and ZAP70. J Exp Med 186: 1645–53PubMedCrossRefGoogle Scholar
  50. 50.
    Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183: 2533–40PubMedCrossRefGoogle Scholar
  51. 51.
    Cazzolli R, Carpenter L, Biden TJ, Schmitz-Peiffer C (2001) A role for protein phosphatase 2A-like activity, but not atypical protein kinase Cζ, in the inhibition of protein kinase B/Akt and glycogen synthesis by palmitate. Diabetes 50: 2210–18PubMedCrossRefGoogle Scholar
  52. 52.
    Resjo S, Goransson O, Harndahl L, et al. (2002) Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal 14: 231–38PubMedCrossRefGoogle Scholar
  53. 53.
    Baroja ML, Vijayakrishnan L, Bettelli E, et al. (2002) Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol 168: 5070–78PubMedGoogle Scholar
  54. 54.
    Chikuma S, Imboden JB, Bluestone JA (2003) Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J Exp Med 1: 129–35Google Scholar
  55. 55.
    Martin M, Schneider H, Azouz A, Rudd CE (2001) Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J Exp Med 11: 1675–81CrossRefGoogle Scholar
  56. 56.
    Fraser JH, Rincon M, McCoy KD, Le Gros G (1999) CTLA4 ligation attenuates AP-1, NFAT and NF-κB activity in activated T cells. Eur J Immunol 29: 838–44PubMedCrossRefGoogle Scholar
  57. 57.
    Olsson C, Riesbeck K, Dohlsten M, Michaelsson E (1999) CTLA-4 ligation suppresses CD28-induced NF-κB and AP-1 activity in mouse T cell blasts. J Biol Chem 274: 14400–5PubMedCrossRefGoogle Scholar
  58. 58.
    Brunner MC, Chambers CA, Chan FK, et al. (1999) CTLA-4-mediated inhibition of early events of T cell proliferation. J Immunol 162: 5813–5820PubMedGoogle Scholar
  59. 59.
    Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 10: 762–74CrossRefGoogle Scholar
  60. 60.
    Woo EY, Yeh H, Chu CS, et al. (2002) Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 9: 4272–6Google Scholar
  61. 61.
    Fallarino F, Grohmann U, Hwang KW, et al. (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4: 1206–12PubMedCrossRefGoogle Scholar
  62. 62.
    Walunas TL, Lenschow DJ, Bakker CY, et al. (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 5: 405–413CrossRefGoogle Scholar
  63. 63.
    Tivol EA, Borriello F, Schweitzer AN, et al. (1994) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 5: 541–547Google Scholar
  64. 64.
    Luhder F, Hoglund P, Allison JP (1998) Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J Exp Med 3: 427–32CrossRefGoogle Scholar
  65. 65.
    Croxford JL, O’Neill JK, Ali RR, et al. (1998) Local gene therapy with CTLA-4-immunoglobulin fusion protein in experimental allergic encephalomyelitis. Eur J Immunol 28: 3904–3916PubMedCrossRefGoogle Scholar
  66. 66.
    Ueda H, Howson JM, Esposito L (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423: 506–11PubMedCrossRefGoogle Scholar
  67. 67.
    Kwon E.D, Foster B.A, Hurwitz A.A, et al. (1999) Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade imunotherapy. Proc Natl Acad Sci USA 96: 15074–79PubMedCrossRefGoogle Scholar
  68. 68.
    Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271: 1734–6PubMedCrossRefGoogle Scholar
  69. 69.
    Yang YF, Zou JP, Mu J, et al. (1997) Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res 57: 4036–41PubMedGoogle Scholar
  70. 70.
    Kwon ED, Hurwitz AA, Foster BA, et al. (1997) Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 94: 8099–103PubMedCrossRefGoogle Scholar
  71. 71.
    Shrikant P, Khoruts A, Mescher MF (1999) CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell-and IL-2-dependent mechanism. Immunity 11: 483–93PubMedCrossRefGoogle Scholar
  72. 72.
    van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190: 355–66PubMedCrossRefGoogle Scholar
  73. 73.
    Phan GQ, Yang JC, Sherry RM, et al. (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100: 8372–7PubMedCrossRefGoogle Scholar
  74. 74.
    Sanderson K, Scotland R, Lee P, et al. (2005) Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 4: 741–50CrossRefGoogle Scholar
  75. 75.
    Beck KE, Blansfield JA, Tran KQ, et al. (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 24: 2283–9PubMedCrossRefGoogle Scholar
  76. 76.
    Ribas A, Camacho LH, Lopez-Berestein G, et al. (2005) Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 23: 8968–77PubMedCrossRefGoogle Scholar
  77. 77.
    Maker AV, Phan GQ, Attia P, et al. (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 12: 1005–16PubMedCrossRefGoogle Scholar
  78. 78.
    Maker AV, Attia P, Rosenberg SA, et al. (2005) Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 175: 7746–54PubMedGoogle Scholar
  79. 79.
    Reuben JM, Lee BN, Li C, et al. (2006) Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer 106: 2437–44PubMedCrossRefGoogle Scholar
  80. 80.
    Lute KD, May KF Jr, Lu PHuman, et al. (2005) CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood 106: 3127–33PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2008

Authors and Affiliations

  • R. Bedel
    • 1
    • 2
  • C. Borg
    • 1
    • 2
  • P. Saas
    • 1
    • 2
  1. 1.INSERM U645 EFS Bourgogne Franche ComtéUniversité de Franche ComtéBesançon
  2. 2.Service ďoncologie médicaleCHU Jean MinjozBesançon

Personalised recommendations