Skip to main content

Rain Production in Convective Storms

  • Chapter
Severe Convective Storms

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

Convective systems can, in addition to generating strong winds, hail, and lightning, produce large amounts of rainfall. In some cases, it is the heavy rain itself that distinguishes the storm, even when the rain is accompanied by one or more of the other defining features of severe storms (Maddox et al. 1979; Changnon 1999). Whereas rain is usually a favorable product of moist convection in the atmosphere, excessive amounts or rates of rainfall can lead to surface erosion, property or crop damage, and devastating floods (e.g., Pontrelli et al. 1999). Rain production carries with it atmospheric implications, as well, so it is important that we understand the physical processes that give rise to precipitation-size hydrometeors in convective systems (Ludlam 1963).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel, J. R., and F. A. Huff, 1999: Record flood-producing rainstorms of 17–18 July 1996 in the Chicago metropolitan area. Part II: Hydrometeorological characteristics of the rainstorms. J. Appl. Meteor., 38, 266–272.

    Article  Google Scholar 

  • Auer, A. H., 1972: Distribution of graupel and hail with size. Mon. Wea. Rev., 100, 325–328.

    Article  Google Scholar 

  • Austin, P. H., M. B. Baker, A. M. Blyth, and J. B. Jensen, 1985: Small-scale variability in warm continental cumulus clouds. J. Atmos. Sci., 42, 1123–1138.

    Article  Google Scholar 

  • Baker, B. A., 1992: Turbulence entrainment and mixing in clouds: A new observational approach. J. Atmos. Sci., 49, 387–404.

    Article  Google Scholar 

  • Baker, M. A., and J. Latham, 1979: The evolution of droplet spectra and rates of production of embryonic raindrops in small cumulus. J. Atmos. Sci., 36, 1612–1615.

    Article  Google Scholar 

  • Baker, M. B., R. J. Breidenthal, T. W. Charlarton, and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci., 41, 299–304.

    Article  Google Scholar 

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126.

    Article  Google Scholar 

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851–864.

    Article  Google Scholar 

  • Beard, K. V., 1992: Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms. Atmos. Res., 28, 125–152.

    Article  Google Scholar 

  • Beard, K. V., and H. T. Ochs, 1993: Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteor., 32, 608–625.

    Article  Google Scholar 

  • Beard, K. V., and H. T. Ochs, 1984: Collection and coalescence efficiencies for accretion. J. Geophys. Res., 89, 7165–7169.

    Article  Google Scholar 

  • Bell, G. D., and J. E. Janowiak, 1995: Atmospheric circulation associated with the midwest floods of 1993. Bull. Amer. Meteor. Soc., 76, 681–695.

    Article  Google Scholar 

  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proes-Verg. Assoc. Met. UGGI, Part 2, 156–178.

    Google Scholar 

  • Berry, E. X., 1967: Cloud droplet growth by collection. J. Atmos. Sci., 24, 688–701.

    Article  Google Scholar 

  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 1825–1831.

    Article  Google Scholar 

  • Blackadar, A. K., and K. Buajitti, 1957: Theoretical studies of diurnal wind variations in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 83, 486–500.

    Article  Google Scholar 

  • Blanchard, D. C., 1985: The oceanic production of atmospheric sea salt. J. Geophys. Res., 90, 961–963.

    Article  Google Scholar 

  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626–641.

    Article  Google Scholar 

  • Blyth, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 3944–3964.

    Article  Google Scholar 

  • Böhm, J. P., 1992: A general hydrodynamic theory for mixed-phase microphysics. Part II: Collision kernels for coalescence. Atmos. Res., 27, 275–290.

    Article  Google Scholar 

  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 1616–1642.

    Article  Google Scholar 

  • Bowen, E. G., 1950: The formation of rain by coalescence. Austr. J. Sci. Res., A3, 193–213.

    Google Scholar 

  • Braham, R. R., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227–242.

    Article  Google Scholar 

  • Braham, R. R., 1964: What is the role of ice in summer rain-showers? J. Atmos. Sci., 21, 640–645.

    Article  Google Scholar 

  • Braham, R. R., 1968: Meteorological bases for precipitation development. Bull. Amer. Meteor. Soc., 49, 343–353.

    Google Scholar 

  • Braham, R. R., 1986: Coalescence-freezing precipitation mechanism. Preprints, 10th Conf. on Planned and Inadvertent Weather Modification, Arlington, VA, Amer. Meteor. Soc., 142–145.

    Google Scholar 

  • Brown, E. N., and R. R. Braham, 1963: Precipitation particle measurements in cumulus congestus. J. Atmos. Sci., 20, 23–28.

    Article  Google Scholar 

  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.

    Article  Google Scholar 

  • Byers, H. R., 1965: Elements of Cloud Physics. University of Chicago Press, 191 pp.

    Google Scholar 

  • Cannon, T. W., J. E. Dye, and V. Toutenhoofd, 1974: The mechanism of precipitation formation in northeast Colorado cumulus. II. Sailplane measurements. J. Atmos. Sci., 31, 2148–2151.

    Article  Google Scholar 

  • Caracena, F., R. A. Maddox, L. R. Hoxit, and C. F. Chappell, 1979: Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 1–17.

    Article  Google Scholar 

  • Carlson, T. N., 1991: Mid-latitude Weather Systems. Harper Collins Academic, 507 pp.

    Google Scholar 

  • Carlson, T. N., and F. H. Ludlam, 1968: Conditions for the occurrence of severe local storms. Tellus, 20, 203–226.

    Article  Google Scholar 

  • Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y-F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 1453–1473.

    Article  Google Scholar 

  • Changnon, S. A., 1999: Record flood-producing rainstorms of 17–18 July 1996 in the Chicago metropolitan area. Part III: Impacts and responses to the flash flooding. J. Appl. Meteor., 38, 273–280.

    Article  Google Scholar 

  • Changnon, S. A., and K. E. Kunkel, 1999: Record flood-producing rainstorms of 17–18 July 1996 in the Chicago metropolitan area. Part I: Synoptic and mesoscale features. J. Appl. Meteor., 38, 257–265.

    Article  Google Scholar 

  • Chen, J-P., 1994: Theory of deliquescence and modified Köhler curves. J. Atmos. Sci., 51, 3505–3516.

    Article  Google Scholar 

  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 1301–1311.

    Article  Google Scholar 

  • Cooper, W. A., R. T. Bruintjes, and G. K. Mather, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 1449–1469.

    Article  Google Scholar 

  • Cotton, W. R., 1970: A numerical simulation of precipitation development in supercooled cumuli. Ph.D. dissertation. Pennsylvania State University, 178 pp.

    Google Scholar 

  • Cotton, W. R., 1972: Numerical simulation of precipitation development in supercooled cumuli. Part II. Mon. Wea. Rev., 100, 764–784.

    Article  Google Scholar 

  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 880 pp.

    Google Scholar 

  • Cotton, W. R., R. L. George, P. J. Wetzel, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev., 111, 1893–1918.

    Article  Google Scholar 

  • Cotton, W. R., M. S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117, 765–783.

    Article  Google Scholar 

  • Czys, R. R., 1989: Ice initiation by collision-freezing in warm-based cumuli. J. Appl. Meteor., 28, 1098–1104.

    Article  Google Scholar 

  • Doswell, C. A., 1987: The distinction between large-scale and mesoscale contributions to severe convection: A case study example. Wea. Forecasting, 2, 3–16.

    Article  Google Scholar 

  • H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581.

    Article  Google Scholar 

  • Dye, J. E., C. A. Knight, V. Toutenhoofd, and T. W. Cannon, 1974: The mechanism of precipitation formation in northeastern Colorado cumulus. III. Coordinated microphysical and radar observations and summary. J. Atmos. Sci., 31, 2152–2159.

    Article  Google Scholar 

  • Elford, C. R., 1956: A new one-minute rainfall record. Mon. Wea. Rev., 84, 51–52.

    Article  Google Scholar 

  • Engelbrecht, H. H., and G. N. Brancato, 1959: World record one-minute rainfall at Unionville, Maryland. Mon. Wea. Rev., 87, 303–306.

    Article  Google Scholar 

  • Fankhauser, J. C., 1988: Estimates of thunderstorm precipitation efficiency from field measurements in CCOPE. Mon. Wea. Rev., 116, 663–684.

    Article  Google Scholar 

  • Feingold, G., Z. Levin, and S. Tzivion, 1991: The evolution of raindrop spectra. Part III: Downdraft generation in an axisymmetrical rainshaft model. J. Atmos. Sci., 48, 315–330.

    Article  Google Scholar 

  • Ferrier, B. S., J. Simpson, and W.-K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev., 124, 2100–2125.

    Article  Google Scholar 

  • Fletcher, R. D., 1950: A relation between maximum observed point and areal rainfall values. Trans. Amer. Geophys. Union, 31, 344–348.

    Article  Google Scholar 

  • Forbes, G. S., 1990: Precipitation in Pennsylvania. Water Resources in Pennsylvania: Availability, Quality, and Management, S. K. Majumdar, E. W. Miller, and R. R. Parizek, Eds., Pennsylvania Academy of Science, 41–59.

    Google Scholar 

  • Forbes, G. S., and R. Greenfield, 1992: Modelling, remote sensing, and prediction of natural disasters: An Overview. Natural and Technological Disasters: Causes, Effects and Preventative Measures, S. K. Majumdar, G. S. Forbes, E. W. Miller, and R. F. Schmaltz, Eds., Pennsylvania Academy of Science, 35–48.

    Google Scholar 

  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 1431–1434.

    Article  Google Scholar 

  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 1333–1345.

    Article  Google Scholar 

  • Fukuta, N., 1992: Theories of competitive cloud droplets growth and their applications to cloud physics studies. J. Atmos. Sci., 49, 1107–1114.

    Article  Google Scholar 

  • Fukuta, N., 1993: Water supersaturation in convective clouds. Atmos. Res., 30, 105–126.

    Article  Google Scholar 

  • Fulks, J. R., 1935: Rate of precipitation from adiabatically ascending air. Mon. Wea. Rev., 63, 291–294.

    Article  Google Scholar 

  • Giorgi, F., L. O. Mearns, C. Shields, and L. Mayer, 1996: A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States. J. Climate, 9, 1150–1162.

    Article  Google Scholar 

  • Haggett, C. M., 1980: Severe storm in the London area-16–17 August 1977. Weather, 35, 2–11.

    Article  Google Scholar 

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28.

    Article  Google Scholar 

  • R. I. Sax, D. Lamb, and A. S. Ramachandra Murty, 1978: Aircraft measurements of ice in Florida cumuli. Quart. J. Roy. Meteor. Soc., 104, 631–651.

    Article  Google Scholar 

  • R. I. Sax, D. Lamb, and R. I. Sax, 1980: Geographical variability of ice phase evolution in supercooled clouds. J. Rech. Atmos., 14, 317–324.

    Google Scholar 

  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784–806.

    Article  Google Scholar 

  • Henderson, R. D., 1993: Extreme storm rainfalls in the southern Alps, New Zealand. Extreme Hydrological Events: Precipitation, Floods and Droughts, IAHS, 113–120.

    Google Scholar 

  • Hobbs, P. V., 1981: The Seattle workshop on extratropical cyclones: A call for a national cyclone project. Bull. Amer. Meteor. Soc., 62, 244–254.

    Google Scholar 

  • Hobbs, P. V., D. A. Bowdle, and L. F. Radke, 1985: Particles in the lower troposphere over the high plains of the United States. Part I: Size distributions, elemental compositions and morphologies. J. Climate Appl. Meteor., 24, 1344–1356.

    Article  Google Scholar 

  • Houghton, H. G., 1950: A preliminary quantitative analysis of precipitation mechanisms. J. Meteor., 7, 363–369.

    Article  Google Scholar 

  • Houze, R. A., 1981: Structure of atmospheric precipitation systems: A global survey. Radio Sci., 16, 671–689.

    Article  Google Scholar 

  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 570 pp.

    Google Scholar 

  • Howell, W. E., 1949: The growth of cloud drops in uniformly cooled air. J. Meteor., 6, 134–149.

    Article  Google Scholar 

  • Hoxit, L. R., and Coauthors, 1978: Meteorological analysis of the Johnstown, Pennsylvania, flash flood, 19–20 July 1977. NOAA Tech. Rep. ERL 401-A PCL 43, 71 pp.

    Google Scholar 

  • Hudson, J. G., 1993: Cloud condensation nuclei. J. Appl. Meteor., 32, 596–607.

    Article  Google Scholar 

  • Huschke, R. E., 1959: Glossary of Meteorology. Amer. Meteor. Soc., 638 pp.

    Google Scholar 

  • Jennings, A. H., 1950: World’s greatest observed point rainfalls. Mon. Wea. Rev., 78, 4–5.

    Article  Google Scholar 

  • Johnson, D. B., 1976: Ultragiant urban aerosol particles. Science, 194, 941–942.

    Article  Google Scholar 

  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448–460.

    Article  Google Scholar 

  • Johnson, D. B., 1993: The onset of effective coalescence growth in convective clouds. Quart. J. Roy. Meteor. Soc., 119, 925–933.

    Article  Google Scholar 

  • Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and air flow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 1444–1472.

    Article  Google Scholar 

  • Jonas, P. R., 1996: Turbulence and cloud microphysics. Atmos. Res., 40, 283–306.

    Article  Google Scholar 

  • Kane, R. J., C. R. Chelius, and J. M. Fritsch, 1987: Precipitation characteristics of mesoscale convective weather systems. J. Climate Appl. Meteor., 26, 1345–1357.

    Article  Google Scholar 

  • Keers, J. F., and P. Wescott, 1976: The Hampstead storm-14 August 1975. Weather, 31, 2–10.

    Article  Google Scholar 

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 31, Amer. Meteor. Soc., 84 pp.

    Google Scholar 

  • Kessler, E., 1975: Condensate content in relation to sloping updraft parameters. J. Atmos. Sci., 32, 443–444.

    Article  Google Scholar 

  • Khain, A. P., and I. L. Sednev, 1995: Simulation of hydrometeor size spectra evolution by water-water, ice-water and ice-ice interactions. Atmos. Res., 36, 107–138.

    Article  Google Scholar 

  • Klett, J. D., and M. H. Davis, 1973: Theoretical collision efficiencies of cloud droplets at small Reynolds numbers. J. Atmos. Sci., 30, 107–117.

    Article  Google Scholar 

  • Knight, C. A., N. C. Knight, J. E. Dye, and V. Toutenhoofd, 1974: The mechanism of precipitation formation in northeastern Colorado cumulus. I. Observations of the precipitation itself. J. Atmos. Sci., 31, 2142–2147.

    Article  Google Scholar 

  • Knupp, K. R., and W. R. Cotton, 1987: Internal structure of a small mesoscale system. Mon. Wea. Rev., 115, 629–645.

    Article  Google Scholar 

  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 29–47.

    Article  Google Scholar 

  • Koenig, L. R., 1965: Drop freezing through drop breakup. J. Atmos. Sci., 22, 448–451.

    Article  Google Scholar 

  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160–1189.

    Article  Google Scholar 

  • Kogan, Y. L., 1993: Drop size separation in numerically simulated convective clouds and its effect on warm rain formation. J. Atmos. Sci., 50, 1238–1253.

    Article  Google Scholar 

  • Krueger, S. K., 1988: The role of entrainment by falling raindrops in microbursts. Proc. 15th Conf. on Severe Local Storms, Baltimore, MD, Amer. Meteor. Soc., J103–J106.

    Google Scholar 

  • Kunkel, K. E., S. A. Changnon, and J. R. Angel, 1994: Climatic aspects of the 1993 Upper Mississippi River Basin Flood. Bull. Amer. Meteor. Soc., 75, 811–822.

    Article  Google Scholar 

  • Kyle, T. G., and W. Sand, 1973: Water content in convective storms. Science, 180, 1274–1276.

    Article  Google Scholar 

  • Lamb, D., J. Hallett, and R. I. Sax, 1981: Mechanistic limitations of the release of latent heat during the natural and artificial glaciation of deep convective clouds. Quart. J. Roy. Meteor. Soc., 107, 935–954.

    Article  Google Scholar 

  • Langmuir, I., 1948: The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteor., 5, 175–192.

    Article  Google Scholar 

  • Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35, 1511–1523.

    Article  Google Scholar 

  • Lew, J. K., and H. R. Pruppacher, 1983: A theoretical determination of the capture efficiency of small columnar ice crystals by large cloud drops. J. Atmos. Sci., 40, 139–145.

    Article  Google Scholar 

  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Locatelli, J. D., and P. V. Hobbs, 1995: A world record rainfall at Holt, Missouri: Was it due to cold frontogenesis aloft? Wea. Forecasting, 10, 779–785.

    Article  Google Scholar 

  • Lott, G. A., 1954: The world-record 42-minute Holt, Missouri, rainstorm. Mon. Wea. Rev., 82, 50–59.

    Article  Google Scholar 

  • Low, T. B., and R. List, 1982: Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalecence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 1591–1606.

    Article  Google Scholar 

  • Lucas, C., E. J. Zipser, and B. S. Ferrier, 1995: Warm-pool cumulonimbus and the ice phase. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 318–320.

    Google Scholar 

  • Ludlam, D. M., 1989: The Johnstown flood: Our most infamous natural disaster. Weatherwise, 42, 88–92.

    Article  Google Scholar 

  • Ludlam, F. H., 1951: The production of showers by the coalescence of cloud droplets. Quart. J. Roy. Meteor. Soc., 77, 402–417.

    Article  Google Scholar 

  • Ludlam, F. H., 1963: Severe local storms: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 1–30.

    Google Scholar 

  • Ludlam, F. H., 1980: Clouds and Storms. The Pennsylvania State University Press, 405 pp.

    Google Scholar 

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.

    Article  Google Scholar 

  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 1475–1493.

    Article  Google Scholar 

  • Maddox, R. A., F. Caracena, L. R. Hoxit, and C. F. Chappell, 1977: Meteorological aspects of the Big Thompson flash flood of 31 July 1976. NOAA Tech. Rep. ERL 388-APCL 41, 83 pp.

    Google Scholar 

  • Maddox, R. A., L. R. Hoxit, C. F. Chappell, and F. Caracena, 1978: Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375–389.

    Article  Google Scholar 

  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-a scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115–123.

    Article  Google Scholar 

  • Maddox, R. A., D. J. Perkey, and J. M. Fritsch, 1981: Evolution of upper tropospheric features during the development of a mesoscale convective complex. J. Atmos. Sci., 38, 1664–1674.

    Article  Google Scholar 

  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.

    Article  Google Scholar 

  • Marwitz, J. D., 1972a: Precipitation efficiency of thunderstorms on the high plains. J. Rech. Atmos., 6, 367–370.

    Google Scholar 

  • Marwitz, J. D., 1972b: The structure and motion of severe hailstorms. Part III: Severely sheared storms. J. Appl. Meteor., 11, 189–201.

    Article  Google Scholar 

  • Mason, B. J., 1971: The Physics of Clouds. Clarendon Press, 671 pp.

    Google Scholar 

  • Mason, B. J., and P. R. Jonas, 1974: The evolution of droplet spectra and large droplets by condensation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 100, 23–38.

    Article  Google Scholar 

  • Massacand, A. C., H. Wernli, and H. C. Davies, 1998: Heavy precipitation on the alpine southside: An upper-level precursor. Geophys. Res. Lett., 25, 1435–1438.

    Article  Google Scholar 

  • McAnelly, R. L., and W. R. Cotton, 1986: Meso-beta-scale characteristics of an episode of meso-alpha-scale convective complexes. Mon. Wea. Rev., 114, 1740–1770.

    Article  Google Scholar 

  • McAnelly, R. L., and W. R. Cotton, 1989: The precipitation of mesoscale convective complexes over the central United States. Mon. Wea. Rev., 117, 784–808.

    Article  Google Scholar 

  • Miller, M. J., 1978: The Hampstead storm: A numerical simulation of a quasi-stationary cumulonimbus system. Quart. J. Roy. Meteor. Soc., 104, 413–427.

    Article  Google Scholar 

  • Mordy, W., 1959: Computations of the growth by condensation of a population of cloud droplets. Tellus, 11, 16–44.

    Article  Google Scholar 

  • Mossop, S. C., 1985: The origin and concentration of ice crystals in clouds. Bull. Amer. Meteor. Soc., 66, 264–273.

    Article  Google Scholar 

  • Newton, C. W., 1981: Pseudo-cold-fronts in the USA. PAGEOPH, 119, 594–611.

    Google Scholar 

  • Ochs, H. T., 1978: Moment-conserving techniques for warm cloud microphysical computations. Part II. Model testing and results. J. Atmos. Sci., 35, 1959–1973.

    Article  Google Scholar 

  • Paluch, I. R., and C. A. Knight, 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41, 1801–1815.

    Article  Google Scholar 

  • Paulhus, J. L. H., 1965: Indian Ocean and Taiwan rainfalls set new records. Mon. Wea. Rev., 93, 331–335.

    Article  Google Scholar 

  • Pinsky, M. B., and A. P. Khain, 1997: Turbulence effects on droplet growth and size distributions in clouds—A review. J. Aerosol Sci., 28, 1177–1214.

    Article  Google Scholar 

  • Pinsky, M. B., and M. Shapiro, 1999: Collisions of small drops in a turbulent flow: Problem formulation and preliminary results. Part I: Collision efficiency. J. Atmos. Sci., 56, 2585–1600.

    Article  Google Scholar 

  • Politovich, M. K., 1993: A study of the broadening of droplet size distributions in cumuli.. 1. Atmos. Sci., 50, 2230–2244.

    Article  Google Scholar 

  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 1651–1664.

    Article  Google Scholar 

  • Pontrelli, M. D., G. Bryan, and J. M. Fritsch, 1999: The Madison County, Virginia, flash flood of 27 June 1995. Wea. Forecasting, 14, 384–404.

    Article  Google Scholar 

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic Publishers, 954 pp.

    Google Scholar 

  • Rangno, A. L., and P. V. Hobbs, 1991: Ice particle concentrations and precipitation development in small polar maritime cumuli-form clouds. Quart. J. Roy. Meteor. Soc., 117, 207–241.

    Article  Google Scholar 

  • Rangno, A. L., and P. V. Hobbs, 1994: Ice particle concentrations and precipitation development in small cumuliform clouds. Quart. J. Roy. Meteor. Soc., 120, 573–601.

    Article  Google Scholar 

  • Rannie, W. F., and D. Blair, 1995: Historic and recent analogues for the extreme 1993 summer precipitation in the North American mid-continent. Weather, 50, 193–200.

    Article  Google Scholar 

  • Rasmussen, R. M., 1995: A review of theoretical and observational studies in cloud and precipitation physics: 1991–1994. Rev. Geophys. (Suppl.), 795–809.

    Google Scholar 

  • Raymond, D. J., and A. M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds. J. Atmos. Sci., 49, 1968–1983.

    Article  Google Scholar 

  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part II: Effects of varying drops and ice initiation. J. Atmos. Sci., 53, 1815–1837.

    Article  Google Scholar 

  • Reuter, G. W., 1986: A historical review of cumulus entrainment studies. Bull. Amer. Meteor. Soc., 67, 151–154.

    Article  Google Scholar 

  • Roesner, S., A. I. Flossmann, and H. R. Pruppacher, 1990: The effect on the evolution of the drop spectrum in clouds of the preconditioning of air by successive convective elements. Quart. J. Roy. Meteor. Soc., 116, 1389–1403.

    Article  Google Scholar 

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3d ed. Pergamon Press, 290 pp.

    Google Scholar 

  • Rosenfeld, D., and W. L. Woodley, 1997: Cloud microphysical observations of relevance to the Texas cold-cloud conceptual seeding model. J. Wea. Mod., 29, 56–69.

    Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. J. Atmos. Sci., 41, 2949–2972.

    Article  Google Scholar 

  • Shaw, R. A., W. C. Reade, L. R. Collins, and J. Verlinde, 1998: Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci., 55, 1965–1976.

    Article  Google Scholar 

  • Squires, P., 1952: The growth of cloud drops by condensation. I: General characteristics. Austr. J. Sci. Res., A5, 59–86.

    Google Scholar 

  • Squires, P., 1956: The micro-structure of cumuli in maritime and continental air. Tellus, 8, 443–444.

    Article  Google Scholar 

  • Squires, P., 1958a: The microstructure and colloidal stability of warm clouds. Tellus, 10, 256–271.

    Article  Google Scholar 

  • Squires, P., 1958b: The spatial variation of liquid water and droplet concentration in cumuli. Tellus, 10, 372–380.

    Article  Google Scholar 

  • Srivastava, R. C., 1989: Growth of cloud drops by condensation: A criticism of currently accepted theory and a new approach. J. Atmos. Sci., 46, 869–887.

    Article  Google Scholar 

  • Steiner, M., and J. A. Smith, 1998: Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model. Atmos. Res., 47–48, 317–326.

    Article  Google Scholar 

  • Telford, J. W., 1955: A new aspect of coalescence theory. J. Meteor., 12, 436–444.

    Article  Google Scholar 

  • Telford, J. W., 1975: Turbulence, entrainment and mixing in cloud dynamics. Pure Appl. Geophys., 113, 1067–1084.

    Article  Google Scholar 

  • Telford, J. W., 1996: Clouds with turbulence; the role of entrainment. Atmos. Res., 40, 261–282.

    Article  Google Scholar 

  • Telford, J. W., and S. K. Chai, 1980: A new aspect of condensation theory. Pure Appl. Geophys., 118, 720–742.

    Article  Google Scholar 

  • Telford, J. W., and S. Ionescu-Niscov, 1987: Comments on “Ice particle concentrations in clouds.” J. Atmos. Sci., 44, 903–910.

    Article  Google Scholar 

  • Tollerud, E. I., and R. S. Collander, 1993: Mesoscale convective systems and extreme rainfall in the central United States.Extreme Hydrological Events: Precipitation, Floods and Droughts, IAHS, 11–19.

    Google Scholar 

  • Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pur. Appl., 43, 243–249.

    Article  Google Scholar 

  • Twomey, S., 1966: Computations of rain formation by coalescence. J. Atmos. Sci., 23, 405–411.

    Article  Google Scholar 

  • Twomey, S., and P. Squires, 1959: The influence of cloud nucleus population on the microstructure and stability of convective clouds. Tellus, 11, 408–411.

    Article  Google Scholar 

  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective com- plexes in the Americas. J. Geophys. Res., 92, 9591–9613.

    Article  Google Scholar 

  • Wagner, A. J., 1972: Weather and circulation of June 1972: A month with two major flood disasters. Mon. Wea. Rev., 100, 692–699.

    Article  Google Scholar 

  • Waldvogel, L. Klein, D. J. Musil, and P. L. Smith, 1987: Characteristics of radar-identified big drop zones in Swiss hailstorms. J. Climate Appl. Meteor., 26, 861–877.

    Article  Google Scholar 

  • Warner, J., 1955: The water content of cumufiform cloud. Tellus, 7, 449–457.

    Article  Google Scholar 

  • Warner, J., and P. Squires, 1958: Liquid water content and the adiabatic model of cumulus development. Tellus, 10, 390–394.

    Article  Google Scholar 

  • Wetzel, P. J., W. R. Cotton, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part II: Evolution and structure of the mature complex. Mon. Wea. Rev., 111, 1919–1937.

    Article  Google Scholar 

  • Wheeler, D., 1995: Madrid flooded, but the drought continues. J. Meteor., 20, 329–333.

    Google Scholar 

  • Williams, J., 1994: The great flood. Weatherwise, Feb.-March 1994, 18–20.

    Google Scholar 

  • Willis, P. J., and J. Hallett, 1991: Microphysical measurements from an aircraft ascending with a growing isolated maritime cumulus tower. J. Atmos. Sci., 48, 283–300.

    Article  Google Scholar 

  • Woodcock, A. H., and D. C. Blanchard, 1955: Test of the salt-nuclei hypothesis of rain formation. Tellus, 7, 437–448.

    Article  Google Scholar 

  • Young, K. C., 1974: The evolution of drop spectra through condensation, coalescence and breakup. Preprints, Conf. on Cloud Physics, Tucson, AZ, Amer. Meteor. Soc., 95–98.

    Google Scholar 

  • Young, K. C., 1975: The evolution of drop spectra due to condensation, coalescence and breakup. J. Atmos. Sci., 32, 965–973.

    Article  Google Scholar 

  • Young, K. C., 1993: Microphysical Processes in Clouds. Oxford University Press, 427 pp.

    Google Scholar 

  • Zhang, D.-L., 1989: The effect of parameterized ice microphysics on the simulation of vortex circulation with a mesoscale hydrostatic model. Tellus, 41A, 132–147.

    Article  Google Scholar 

  • Zhang, D.-L., and J. M. Fritsch, 1986: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43, 1913–1943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Meteorological Society

About this chapter

Cite this chapter

Lamb, D. (2001). Rain Production in Convective Storms. In: Doswell, C.A. (eds) Severe Convective Storms. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-06-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-06-5_8

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-06-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics