Introduction to Block-oriented Nonlinear Systems

  • Er-Wei Bai
  • Fouad Giri
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 404)


System identification refers to the experimental approach that consists of determining system models by fitting experimental data to a suitable model structure [14] in some optimal ways. Linear model structures can be based upon when the physical system remains in the vicinity of a nominal operation point so that the linearity assumption is satisfied. When a wide range of operation modes are involved, the linear assumption may not be valid and a nonlinear model structure becomes necessary to capture the system (nonlinear) behaviour. In relatively simple cases, suitable nonlinear model structures are obtained using the mathematical modelling approach that consists of describing the system phenomena using basic laws of physics, chemistry, etc. Then, system identification methods may be resorted to assign suitable numerical values to the (unknown) model parameters. When the mathematical modelling approach is insufficient, system identification must rely on ‘universal’ black-box or grey-box nonlinear model structures. These include NARMAX models [9], multi-model representations [15], neuro-fuzzy models [3], Volterra series [19], non-parametric models [14] and others.


Solid Oxide Fuel Cell Nonlinear Element Volterra Series Hammerstein Model Wiener Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balestrino, A., Landi, A., Ould-Zmirli, M., Sani, L.: Automatic nonlinear auto-tuning method for Hammerstein modeling of electrical drives. IEEE Transactions on Industrial Electronics 48, 645–655 (2001)CrossRefGoogle Scholar
  2. 2.
    Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions on Circuits and Systems 32, 1150–1161 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brown, M., Harris, H.C.: Neurofuzzy adaptive modelling and control. Prentice Hall, New Jersey (1994)Google Scholar
  4. 4.
    Dempsey, E., Westwick, D.: Identification of Hammerstein models with cubic spline nonlinearities. IEEE Transactions on Biomedical Engineering 51, 237–245 (2004)CrossRefGoogle Scholar
  5. 5.
    Eskinat, E., Johnson, S., Luyben, W.L.: Use of Hammerstein models in identification of nonlinear systems. AIChE Journal 37, 255–268 (1991)CrossRefGoogle Scholar
  6. 6.
    Hammerstein, A.: Nichtlineare integralgleichung nebst anwendungen. Acta Mathematica 54, 117–176 (1930)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hunt, K.J., Munih, M., Donaldson, N.D., Barr, F.M.D.: Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Transactions on Biomedical Engineering 45, 998–1009 (1998)CrossRefGoogle Scholar
  8. 8.
    Hunter, I.W., Korenberg, M.J.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biological Cybernetics 55, 135–144 (1986)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Johansen, T.A., Foss, B.A.: Constructing NARMAX models using ARMAX models. International Journal of Control 58, 1125–1153 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jurado, F.: A method for the identification of solid oxide fuel cells using a Hammerstein model. Journal of Power Sources 154, 145–152 (2006)CrossRefGoogle Scholar
  11. 11.
    Kalafatis, A., Wang, L., Cluett, W.R.: Identification of time-varying pH processes using sinusoidal signals. Automatica 41, 685–691 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kim, J., Konstantinou, K.: Digital predistortion of wideband signals based on power amplifier model with memory. IEE Electronics Letters 37, 1417–1418 (2001)CrossRefGoogle Scholar
  13. 13.
    Lee, Y.J., Sung, S.W., Park, S., Park, S.: Input test signal design and parameter estimation method for the Hammerstein–Wiener processes. Industrial and Engineering Chemistry Research 43, 7521–7530 (2004)CrossRefGoogle Scholar
  14. 14.
    Ljung, L.: System identification: Theory for the user. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  15. 15.
    Murray-Smith, R., Johansen, T.A.: Multiple model approaches to modelling and control. Taylor & Francis, London (1997)Google Scholar
  16. 16.
    Palanthandalam-Madapusi, H.J., Ridley, A.J., Bernstein, D.S.: Identification and prediction of ionospheric dynamics using a Hammerstein–Wiener model with radial basis functions. In: American Control Conference, Portland, OR, USA, pp. 5052–5057 (2005)Google Scholar
  17. 17.
    Palanthandalam-Madapusi, H.J., Bernstein, D.S., Ridley, A.J.: Space Weather Forecasting: Identifying periodically switching block-structured models for predicting magnetic-field fluctuations. IEEE Control Systems Magazine 27, 109–123 (2007)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Park, H.C., Sung, S.W., Lee, J.: Modeling of Hammerstein–Wiener processes with special input test signals. Industrial and Engineering Chemistry Research 45, 1029–1038 (2006)CrossRefGoogle Scholar
  19. 19.
    Schetzen, M.: The Volterra and Wiener theories of non-linear systems. Krieger Publishing Co. (1980), (reprint Edition with Additional Material, Malabar, Fla)Google Scholar
  20. 20.
    Srinivasan, R., Rengaswamy, R., Narasimhan, S., Miller, R.: Control loop performance assessment - Hammerstein model approach for stiction diagnosis. Industrial and Engineering Chemistry Research 44, 6719–6728 (2005)CrossRefGoogle Scholar
  21. 21.
    Sung, S.: System identification method for Hammerstein processes. Industrial and Engineering Chemistry Research 41, 4295–4302 (2002)CrossRefGoogle Scholar
  22. 22.
    Wang, J., Sano, A., Chen, T., Huang, B.: Identification of Hammerstein systems without explicit parameterization of nonlinearity. International Journal of Control 82, 937–952 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wiener, N.: Nonlinear problems in random theory. Wiley, New York (1958)zbMATHGoogle Scholar
  24. 24.
    Zhu, Y.: Distillation column identification for control using Wiener model. In: American Control Conference, San Diego, California, vol. 5, pp. 3462–3466 (1999)Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Er-Wei Bai
    • 1
  • Fouad Giri
    • 2
  1. 1.Dept. of Elec. and Comp. EngineeringUniversity of Iowa 
  2. 2.GREYCUniversity of Caen 

Personalised recommendations