A Modular, Qualitative Modeling of Regulatory Networks Using Petri Nets

  • Claudine Chaouiya
  • Hanna Klaudel
  • Franck Pommereau
Part of the Computational Biology book series (COBO, volume 16)


Advances in high-throughput technologies have enabled the delineation of large networks of interactions that control cellular processes. To understand behavioral properties of these complex networks, mathematical and computational tools are required. The multi-valued logical formalism, initially defined by Thomas and coworkers, proved well adapted to account for the qualitative knowledge available on regulatory interactions, and also to perform analyses of their dynamical properties. In this context, we present two representations of logical models in terms of Petri nets. In a first step, we briefly show how logical models of regulatory networks can be transposed into standard (place/transition) Petri nets, and discuss the capabilities of such a representation. In the second part, we focus on logical regulatory modules and their composition, demonstrating that a high-level Petri net representation greatly facilitates the modeling of interconnected modules. Doing so, we introduce an explicit means to integrate signals from various interconnected modules, taking into account their spatial distribution. This provides a flexible modeling framework to handle regulatory networks that operate at both intra- and intercellular levels. As an illustration, we describe a simplified model of the segment-polarity module involved in the segmentation of the Drosophila embryo.


Regulatory Network Synthetic Biology Regulatory Component Topological Relation Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank G. Batt, A. Naldi, E. Remy, S. Soliman, D. Thieffry for fruitful discussions. This work was supported by the French Research Agency (project ANR-08-SYSC-003).


  1. 2.
    Agapakis, C., Silver, P.: Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. Mol. Biosyst. 7(5), 704–713 (2009) CrossRefGoogle Scholar
  2. 5.
    Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003) MathSciNetCrossRefGoogle Scholar
  3. 28.
    Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., Weiss, R.: A synthetic multicellular system for programmed pattern formation. Nature 434(7037), 1130–1134 (2005) CrossRefGoogle Scholar
  4. 29.
    Bause, F., Kemper, P., Kritzinger, P.: Abstract Petri net notation. Forschungsbericht 563, Fachbereichs Informatik, Universität Dortmund (Germany) (1994). Also in: Petri Net Newsletter 49, 9–27 (1995) Google Scholar
  5. 52.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986) zbMATHCrossRefGoogle Scholar
  6. 64.
    Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. LNCIS 294, 119–126 (2003) Google Scholar
  7. 65.
    Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative modelling of genetic networks: from logical regulatory graphs to standard Petri nets. In: LNCS, vol. 3099, pp. 137–156. Springer, Berlin (2004) Google Scholar
  8. 66.
    Chaouiya, C., Remy, E., Thieffry, D.: Qualitative Petri net modelling of genetic networks. In: Trans. Comp. Syst. Biol. VI. LNCS, vol. 4220, pp. 95–112. Springer, Berlin (2006) CrossRefGoogle Scholar
  9. 67.
    Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. J. Discret. Algorithms 6(2), 165–177 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 68.
    Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-valued logical regulatory networks. Nat. Comput. (2010). doi: 10.1007/s1104-010-9178-0
  11. 69.
    Chaves, M., Albert, R., Sontag, E.D.: Robustness and fragility of boolean models for genetic regulatory networks. J. Theor. Biol. 235(3), 431–449 (2005) MathSciNetCrossRefGoogle Scholar
  12. 81.
    Comet, J.-P., Klaudel, H., Liauzu, S.: Modeling multi-valued genetic regulatory networks using high-level Petri nets. In: LNCS, vol. 3536, pp. 208–227. Springer, Berlin (2005) Google Scholar
  13. 87.
    von Dassow, G., Odell, G.M.: Design and constraints of the drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J. Exp. Zool. 294(3), 179–215 (2002) CrossRefGoogle Scholar
  14. 100.
    Drubin, D.A., Way, J.C., Silver, P.A.: Designing biological systems. Genes Dev. 21(3), 242–254 (2007) CrossRefGoogle Scholar
  15. 101.
    DSSZ-MC: Tools for the symbolic analysis of bounded Petri nets.
  16. 109.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000) CrossRefGoogle Scholar
  17. 115.
    Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), 124–131 (2006) CrossRefGoogle Scholar
  18. 116.
    Fauré, A., Naldi, A., Chaouiya, C., Ciliberto, A., Thieffry, D.: Modular logical modelling of the budding yeast cell cycle. Mol. Biosyst. 5, 1787–1796 (2009) CrossRefGoogle Scholar
  19. 128.
    Gilbert, S.F.: Developmental Biology, 8th edn. Sinauer, Sunderland (2006) Google Scholar
  20. 132.
    GINsim: Gene Interaction Network simulation,
  21. 166.
  22. 168.
    Ingolia, N.T.: Topology and robustness in the drosophila segment polarity network. PLoS Biol. 2(6), e123 (2004) CrossRefGoogle Scholar
  23. 175.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Computat. Biol. 9, 67–103 (2002) CrossRefGoogle Scholar
  24. 179.
    Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Multi-valued decision diagrams: theory and applications. Int. J. Multiple-Valued Logic 4, 9–62 (1998) MathSciNetzbMATHGoogle Scholar
  25. 185.
    Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetics nets. J. Theor. Biol. 22, 437–467 (1969) MathSciNetCrossRefGoogle Scholar
  26. 202.
    Klaudel, H., Pommereau, F.: M-nets: a survey. Acta Inform. 45, 537–564 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 258.
    Mendoza, L.: A network model for the control of the differentiation process in Th cells. Biosystems 84(2), 101–114 (2006) CrossRefGoogle Scholar
  28. 265.
    Mirschel, S., Steinmetz, K., Rempel, M., Ginkel, M., Gilles, E.D.: ProMoT: ModularModeling for Systems Biology. Bioinformatics 25(5), 687–689 (2009) CrossRefGoogle Scholar
  29. 282.
    Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation of logical models of regulatory networks. In: LNBI, vol. 4695, pp. 233–247. Springer, Berlin (2007) Google Scholar
  30. 283.
    Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2), 134–139 (2009) CrossRefGoogle Scholar
  31. 284.
    Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: A reduction of logical regulatory graphs preserving essential dynamical properties. In: LNBI, vol. 5688, pp. 266–280. Springer, Berlin (2009) Google Scholar
  32. 306. The reference site for the Petri Net Markup Language.
  33. 307.
    Pommereau, F.: Quickly prototyping Petri nets tools with SNAKES. ACM Digital Library, pp. 1–10, ACM (2008) Google Scholar
  34. 313.
    Python Software Foundation: Python programming language.
  35. 330.
    Saez-Rodriguez, J., Simeoni, L., Lindquist, J.A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.U., Weismantel, R., Gilles, E.D., Klamt, S., Schraven, B.: A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3(8), e163 (2007) MathSciNetCrossRefGoogle Scholar
  36. 333.
    Sánchez, L., Thieffry, D.: A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. 211(2), 115–141 (2001) CrossRefGoogle Scholar
  37. 334.
    Sánchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J. Theor. Biol. 224(4), 517–537 (2003) CrossRefGoogle Scholar
  38. 335.
    Sánchez, L., Chaouiya, C., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the segment polarity cross-regulatory module. Int. J. Dev. Biol. 52(8), 1059–1075 (2008) CrossRefGoogle Scholar
  39. 343.
    Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinform. 8(Suppl. 6), S9 (2007) CrossRefGoogle Scholar
  40. 357.
    Shaffer, C.A., Randhawa, R., Tyson, J.J.: The role of composition and aggregation in modeling macromolecular regulatory networks. In: Proc. of the Winter Simulation Conf., pp. 1628–1636 (2006) Google Scholar
  41. 362.
    Simão, E., Remy, E., Thieffry, D., Chaouiya, C.: Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. Coli. Bioinformatics 21(2), ii190–ii196 (2005) CrossRefGoogle Scholar
  42. 374.
    Steggles, L.J., Banks, R., Shaw, O., Wipat, A.: Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23(3), 336–343 (2007) CrossRefGoogle Scholar
  43. 377.
    Strehl, K., Thiele, L.: Interval diagrams for efficient symbolic verification of process networks. IEEE Trans.-Comput., Aided Des. Integr. Circuits Syst. 19(8), 939–956 (2000) CrossRefGoogle Scholar
  44. 389.
    Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42, 565–583 (1973) CrossRefGoogle Scholar
  45. 390.
    Thomas, R., D’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990) zbMATHGoogle Scholar
  46. 391.
    Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153, 1–23 (1991) CrossRefGoogle Scholar
  47. 392.
    Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks, I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995) zbMATHGoogle Scholar
  48. 393.
    TINA: TIme petri Net Analyzer,
  49. 417.
    Wolpert, L., Beddington, R., Brockes, J., Jessell, T., Lawrence, P., Meyerowitz, E.: Principles of Development, 3rd edn. Oxford University Press, London (2006) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Claudine Chaouiya
    • Hanna Klaudel
      • Franck Pommereau

        There are no affiliations available

        Personalised recommendations