Advertisement

MATLAB-Based Tools for BCI Research

  • Arnaud Delorme
  • Christian Kothe
  • Andrey Vankov
  • Nima Bigdely-Shamlo
  • Robert Oostenveld
  • Thorsten O. Zander
  • Scott Makeig
Part of the Human-Computer Interaction Series book series (HCIS)

Abstract

We first discuss two MATLAB-centered solutions for real-time data streaming, the environments FieldTrip (Donders Institute, Nijmegen) and DataSuite (Data- River, Producer, MatRiver) (Swartz Center, La Jolla). We illustrate the relative simplicity of coding BCI feature extraction and classification under MATLAB (The Mathworks, Inc.) using a minimalist BCI example, and then describe BCILAB (Team PhyPa, Berlin), a new BCI package that uses the data structures and extends the capabilities of the widely used EEGLAB signal processing environment. We finally review the range of standalone and MATLAB-based software currently freely available to BCI researchers.

Keywords

Data Stream Linear Discriminant Analysis Independent Component Analysis Independent Component Analysis Data Streaming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adapt © 1987–2003 and Varieté, © 2000, 2001 are property of EEG Solutions LLC, and are used under free license for scientific non-profit research Google Scholar
  2. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159 CrossRefGoogle Scholar
  3. Babiloni F, et al. (1995) Performances of surface Laplacian estimators: A study of simulated and real scalp potential distributions. Brain Topogr 8(1):35–45 CrossRefGoogle Scholar
  4. Bilmes J (1998) Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. International Computer Science Institute Google Scholar
  5. Birbaumer N, et al. (2009) Neurofeedback and brain-computer interface clinical applications. Int Rev Neurobiol 86:107–187 CrossRefGoogle Scholar
  6. Blankertz B, Curio G, Müller K (2002a) Classifying single trial EEG: Towards brain computer interfacing. In: Diettrich T, Becker S, Ghahramani Z (eds) Advances in Neural Inf Proc Systems (NIPS 01), pp 157–164 Google Scholar
  7. Blankertz B, et al (2002b) Single trial detection of EEG error potentials: A tool for increasing BCI transmission rates. In: Artificial Neural Networks—ICANN 2002 Google Scholar
  8. Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21 CrossRefGoogle Scholar
  9. Dornhege G, Blankertz B, Curio G (2003a) Speeding up classification of multi-channel brain-computer interfaces: Common spatial patterns for slow cortical potentials. In: First International IEEE EMBS Conference on In Neural Engineering Google Scholar
  10. Dornhege G, et al (2003b) Combining features for BCI, In: Becker S, Thrun S, Obermayer K (eds), Proc Systems (NIPS 02), pp 1115–1122 Google Scholar
  11. Farwell L, Donchin E (1988) Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523 CrossRefGoogle Scholar
  12. Figueiredo M, Jain A (2002) Unsupervised learning on finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3) Google Scholar
  13. Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188 CrossRefGoogle Scholar
  14. Friedman J (2002) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175 CrossRefGoogle Scholar
  15. Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554 MathSciNetzbMATHCrossRefGoogle Scholar
  16. Jaakkola T, Jordan M (1997) A variational approach to Bayesian logistic regression models and their extensions. In: Sixth International Workshop on Artificial Intelligence and Statistics Google Scholar
  17. Jung T-P, et al. (1997) Estimating alertness from the EEG power spectrum. IEEE Trans Biomed Eng 44(1):60–69 CrossRefGoogle Scholar
  18. Kothe C (2009) Design and Implementation of a Research Brain-Computer Interface. Berlin Institute of Technology, Berlin. Section 8.2.1 Google Scholar
  19. Lin C-T, et al. (2008) A noninvasive prosthetic platform using mobile & wireless EEG. Proc IEEE 96(7):1167–1183 CrossRefGoogle Scholar
  20. Makeig S, et al. (2009) Linking brain, mind and behavior. Int J Psychophysiol 73(2):95–100 CrossRefGoogle Scholar
  21. Makeig S, et al. (2002) Dynamic brain sources of visual evoked responses. Science 295(5555):690–694 CrossRefGoogle Scholar
  22. Makeig S, Inlow M (1993) Lapses in alertness: Coherence of fluctuations in performance and EEG spectrum. Electroencephalogr Clin Neurophysiol 86(1):23–35 CrossRefGoogle Scholar
  23. Makeig S, et al (1996) Independent component analysis of electroencephalographic data. In: Touretzky D, Mozer M, Hasselmo M (eds), Advances in Neural Information Processing Systems, pp 145–151 Google Scholar
  24. Miner LA, McFarland DJ, Wolpaw JR (1998) Answering questions with an electroencephalogram-based brain-computer interface. Arch Phys Med Rehabil 79(9):1029–1033 CrossRefGoogle Scholar
  25. Palmer JA, et al (2007) Modeling and estimation of dependent subspaces with non-radially symmetric and skewed densities. In: 7th International Conference on Independent Component Analysis and Signal Separation, London, UK Google Scholar
  26. Perrin F et al. (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66(1):75–81 MathSciNetCrossRefGoogle Scholar
  27. Ramoser H, Müller-Gerking J, Pfurtscheller G (1998) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 1998(8):441–446 Google Scholar
  28. Schalk G, et al. (2004) BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043 CrossRefGoogle Scholar
  29. Schlögl A (2000) The electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications. Shaker Verlag, Aachen. ISBN3-8265-7640-3 Google Scholar
  30. Schlögl A, Brunner C (2000) Biosig: A free and open source software library for BCI research. Computer 41(10):44–50 CrossRefGoogle Scholar
  31. Schölkopf B, Smola A (2002) Learning with Kernels. MIT Press, Cambridge, MA Google Scholar
  32. Sellers E, et al. (2006) A p300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biol Psychol 73(3):242–252 CrossRefGoogle Scholar
  33. Tipping M (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244 MathSciNetzbMATHGoogle Scholar
  34. Tomioka R et al. (2006) An iterative algorithm for spatio-temporal filter optimization. In: 3rd International BCI Workshop and Training Course. Verlag der Technischen Universität Graz, Graz Google Scholar
  35. Venthur B, Blankertz B (2008) A platform-independent open-source feedback framework for BCI systems. In: 4th International Brain-Computer Interface Workshop and Training Course Google Scholar
  36. Vidaurre C, Schlögl (2008) A comparison of adaptive features with linear discriminant classifier for brain computer interfaces. In: Engineering in Medicine and Biology Society. EMBS 2008. 30th Annual International Conference of the IEEE Google Scholar
  37. Vlassis N, Likas A, Greedy EM (2002) Algorithm for Gaussian Mixture Learning. Neural Processing Letters, vol 15. Kluwer Academic Publishers, Dordrecht Google Scholar
  38. Zander T, Jatzev S (2009) Detecting affective covert user states with passive brain-computer interfaces. In: ACII 2009. IEEE Computer Society Press, Los Alamitos, CA Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Arnaud Delorme
    • 1
    • 2
    • 3
  • Christian Kothe
    • 4
    • 5
  • Andrey Vankov
    • 1
  • Nima Bigdely-Shamlo
    • 1
  • Robert Oostenveld
    • 6
  • Thorsten O. Zander
    • 4
    • 5
  • Scott Makeig
    • 1
  1. 1.Swartz Center for Computational Neuroscience, Institute for Neural ComputationUniversity of California San DiegoLa JollaUSA
  2. 2.UPS, Centre de Recherche Cerveau et CognitionUniversité de ToulouseToulouseFrance
  3. 3.CNRS, CerCoToulouseFrance
  4. 4.Team PhyPATU BerlinBerlinGermany
  5. 5.Department of Psychology and Ergonomics, Chair Human-Machine SystemsBerlin Institute of TechnologyBerlinGermany
  6. 6.Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations