Brain-Computer Interfacing and Games

  • Danny Plass-Oude Bos
  • Boris Reuderink
  • Bram van de Laar
  • Hayrettin Gürkök
  • Christian Mühl
  • Mannes Poel
  • Anton Nijholt
  • Dirk Heylen
Part of the Human-Computer Interaction Series book series (HCIS)

Abstract

Recently research into Brain-Computer Interfacing (BCI) applications for healthy users, such as games, has been initiated. But why would a healthy person use a still-unproven technology such as BCI for game interaction? BCI provides a combination of information and features that no other input modality can offer. But for general acceptance of this technology, usability and user experience will need to be taken into account when designing such systems. Therefore, this chapter gives an overview of the state of the art of BCI in games and discusses the consequences of applying knowledge from Human-Computer Interaction (HCI) to the design of BCI for games. The integration of HCI with BCI is illustrated by research examples and showcases, intended to take this promising technology out of the lab. Future research needs to move beyond feasibility tests, to prove that BCI is also applicable in realistic, real-world settings.

Notes

Acknowledgements

This work has been supported by funding from the Dutch National SmartMix project BrainGain on BCI (Ministry of Economic Affairs) and the GATE project, funded by the Netherlands Organization for Scientific Research (NWO) and the Netherlands ICT Research and Innovation Authority (ICT Regie).

References

  1. Aftanas LI, Reva NV, Varlamov AA, Pavlov SV, Makhnev VP (2004) Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: Temporal and topographic characteristics. Neurosci Behav Physiol 34(8):859–867 CrossRefGoogle Scholar
  2. Allanson J, Mariani J (1999) Mind over virtual matter: Using virtual environments for neurofeedback training. In: IEEE Virtual Reality Conference 1999 (VR’99), pp 270–273 Google Scholar
  3. Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 11(1):113–116 CrossRefGoogle Scholar
  4. Bayliss JD, Ballard DH (2000) A virtual reality testbed for brain-computer interface research. IEEE Trans Rehabil Eng 8(2):188–190 CrossRefGoogle Scholar
  5. Bayliss JD, Inverso SA, Tentler A (2004) Changing the P300 brain computer interface. CyberPsychol Behav 7(6):694–704 CrossRefGoogle Scholar
  6. Benovoy M, Cooperstock JR, Deitcher J (2008) Biosignals analysis and its application in a performance setting. In: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pp 253–258 Google Scholar
  7. Bianchi-Berthouze N, Kim W, Patel D (2007) Does body movement engage you more in digital game play? And why? In: Affective Computing and Intelligent Interactions. Lecture Notes in Computer Science, vol 4738. Springer, Berlin, pp 102–113 CrossRefGoogle Scholar
  8. Blankertz B, Kawanabe M, Tomioka R, Hohlefeld FU, Nikullin V, Müller KR (2007) Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing. Neural Inf Process Syst (NIPS) 20:113–120 Google Scholar
  9. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56 CrossRefGoogle Scholar
  10. Blizzard Entertainment®, Inc (2008) World of Warcraft® subscriber base reaches 11.5 million worldwide. http://www.blizzard.com/us/press/081121.html
  11. Bussink D (2008) Towards the first HMI BCI game. Master’s thesis, University of Twente Google Scholar
  12. Cantero J, Atienza M, Gómez C, Salas R (1999) Spectral structure and brain mapping of human alpha activities in different arousal states. Neuropsychobiology 39(2):110–116 CrossRefGoogle Scholar
  13. Chanel G, Kronegg J, Grandjean D, Pun T (2006) Emotion assessment: Arousal evaluation using EEG’s and peripheral physiological signals. In: Multimedia Content Representation, Classification and Security. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, pp 530–537 CrossRefGoogle Scholar
  14. Chanel G, Rebetez C, Bétrancourt M, Pun T (2008) Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. In: MindTrek ’08: Proceedings of the 12th International Conference on Entertainment and Media in the Ubiquitous Era. ACM, New York, NY, USA, pp 13–17 CrossRefGoogle Scholar
  15. Chanel G, Kierkels JJ, Soleymani M, Pun T (2009) Short-term emotion assessment in a recall paradigm. Int J Hum Comput Stud 67(8):607–627 CrossRefGoogle Scholar
  16. Cho BH, Lee JM, Ku JH, Jang DP, Kim JS, Kim IY, Lee JH, Kim SI (2002) Attention enhancement system using virtual reality and EEG biofeedback. In: IEEE Virtual Reality Conference 2002 (VR 2002), p 156 Google Scholar
  17. Cover TM, Thomas JA (2006) Elements of Information Theory, 2nd edn. Wiley, New York MATHGoogle Scholar
  18. Csikszentmihalyi M (1990) Flow: The Psychology of Optimal Experience. Harper and Row, New York Google Scholar
  19. Davidson RJ (1992) Anterior cerebral asymmetry and the nature of emotion. Brain Cogn 20(1):125–151 CrossRefGoogle Scholar
  20. Doppelmayr M, Klimesch W, Stadler W, Pöllhuber D, Heine C (2002) EEG alpha power and intelligence. Intelligence 30(3):289–302 CrossRefGoogle Scholar
  21. Fairclough SH (2009) Fundamentals of physiological computing. Interact Comput 21(1–2):133–145 CrossRefGoogle Scholar
  22. Ferrez P, Millán JdR (2008) Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans Biomed Eng 55(3):923–929 CrossRefGoogle Scholar
  23. Finke A, Lenhardt A, Ritter H (2009) The MindGame: A P300-based brain-computer interface game. Neural Netw 9(22):1329–1333 CrossRefGoogle Scholar
  24. Galán F, Ferrez P, Oliva F, Guardia J, Millán JdR (2007) Feature extraction for multi-class BCI using canonical variates analysis. In: IEEE International Symposium on Intelligent Signal Processing, pp 1–6 Google Scholar
  25. Garcia Molina G, Tsoneva T, Nijholt A (2009) Emotional brain-computer interfaces. In: Proceedings of the 3rd International Conference on Affective Computing and Intelligent Interaction (ACII 2009). IEEE Computer Society Press, Los Alamitos, pp 138–146 Google Scholar
  26. Goodwin NC (1987) Functionality and usability. Commun ACM 30(3):229–233. DOI http://doi.acm.org/10.1145/214748.214758 MathSciNetCrossRefGoogle Scholar
  27. Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11(2):145–147 CrossRefGoogle Scholar
  28. Hettinger LJ, Branco P, Encarnacao LM, Bonato P (2003) Neuroadaptive technologies: Applying neuroergonomics to the design of advanced interfaces. Theoretical Issues in Ergonomics Science, pp 220–237 Google Scholar
  29. Hiltz SR, Johnson K (1990) User satisfaction with computer-mediated communication systems. Manag Sci 36(6):739–764. http://www.jstor.org/stable/2631904 CrossRefGoogle Scholar
  30. Hjelm SI (2003) Research + design: The making of brainball. Interactions 10(1):26–34 CrossRefGoogle Scholar
  31. Hjelm SI, Eriksson E, Browall C (2000) Brainball—using brain activity for cool competition. In: Proceedings of the First Nordic Conference on Human-Computer Interaction, p 59 Google Scholar
  32. Hwang HJ, Kwon K, Im CH (2009) Neurofeedback-based motor imagery training for brain–computer interface (BCI). J Neurosci Methods 179(1):150–156 CrossRefGoogle Scholar
  33. IJsselsteijn W, de Kort Y, Poels K (2008) The game experience questionnaire: Development of a self-report measure to assess the psychological impact of digital games. Manuscript submitted for publication Google Scholar
  34. International Organization for Standardization (1991) ISO 9126—Information technology—Software product evaluation—Quality characteristics and guidelines for their use Google Scholar
  35. Ives B, Olson MH, Baroudi JJ (1983) The measurement of user information satisfaction. Commun ACM 26(10):785–793. DOI http://doi.acm.org/10.1145/358413.358430 CrossRefGoogle Scholar
  36. Jackson MM, Mappus R, Barba E, Hussein S, Venkatesh G, Shastry C, Israeli A (2009) Continous control paradigms for direct brain interfaces. In: Human-Computer Interaction. Novel Interaction Methods and Techniques. Springer, Berlin, pp 588–595 CrossRefGoogle Scholar
  37. Kaul P (2006) Neurological gaming environments. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Educators Program. ACM, New York, NY, USA, p 25 CrossRefGoogle Scholar
  38. Kayagil TA, Bai O, Lin P, Furlani S, Vorbach S, Hallett M (2007) Binary EEG control for two-dimensional cursor movement: An online approach. IEEE/ICME International Conference on Complex Medical Engineering, pp 1542–1545 Google Scholar
  39. Keil A, Müller MM, Gruber T, Wienbruch C, Stolarova M, Elbert T (2001) Effects of emotional arousal in the cerebral hemispheres: A study of oscillatory brain activity and event-related potentials. Clin Neurophysiol 112(11):2057–2068 CrossRefGoogle Scholar
  40. Kim J, André E (2008) Emotion recognition based on physiological changes in music listening. IEEE Trans Pattern Anal Mach Intell 30(12):2067–2083 CrossRefGoogle Scholar
  41. Krepki R, Blankertz B, Curio G, Müller KR (2007) The Berlin brain-computer interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed Tools Appl 33(1):73–90 CrossRefGoogle Scholar
  42. Lalor EC, Kelly SP, Finucane C, Burke R, Reilly RB, McDarby G (2004) Brain computer interface based on the steady-state VEP for immersive gaming control. Biomed Tech 49(1):63–64 Google Scholar
  43. Lalor EC, Kelly SP, Finucane C, Burke R, Smith R, Reilly RB, McDarby G (2005) Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J Appl Signal Process 19:3156–3164 Google Scholar
  44. Lécuyer A, Lotte F, Reilly RB, Leeb R, Hirose M, Slater M (2008) Brain-computer interfaces, virtual reality, and videogames. IEEE Comput 41(10):66–72 CrossRefGoogle Scholar
  45. Lee U, Han SH, Kim HS, Kim YB, Jung HG, Lee HJ, Lang Y, Kim D, Jin M, Song J, Song S, Song CG, Shin HC (2006) Development of a neuron based internet game driven by a brain-computer interface system. In: Proceedings of the International Conference on Hybrid Information Technology, pp 600–604 Google Scholar
  46. Leeb R, Pfurtscheller G (2004) Walking through a virtual city by thought. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004. IEMBS ’04, vol 2, pp 4503–4506 Google Scholar
  47. Leeb R, Scherer R, Lee F, Bischof H, Pfurtscheller G (2004) Navigation in virtual environments through motor imagery. In: Proceedings of the 9th Computer Vision Winter Workshop, CVWW, vol 4, pp 99–108 Google Scholar
  48. Leeb R, Keinrath C, Friedman D, Guger C, Neuper C, Garau M, Antley A, Steed A, Slater M, Pfurtscheller G (2005) Walking from thoughts: Not the muscles are crucial but the brain waves! In: Proceedings of the 8th Annual International Workshop on Presence, pp 25–32 Google Scholar
  49. Lehtonen J, Jylanki P, Kauhanen L, Sams M (2008) Online classification of single EEG trials during finger movements. IEEE Trans Biomed Eng 55(2 Part 1):713–720 CrossRefGoogle Scholar
  50. Lin TA, John LR (2006) Quantifying mental relaxation with EEG for use in computer games. In: Proceedings of the International Conference on Internet Computing, pp 409–415 Google Scholar
  51. Lin YP, Wang CH, Wu TL, Jeng SK, Chen JH (2009) EEG-based emotion recognition in music listening: A comparison of schemes for multiclass support vector machine. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 2009, pp 489–492 Google Scholar
  52. Liu C, Agrawal P, Sarkar N, Chen S (2009) Dynamic difficulty adjustment in computer games through real-time anxiety-based affective feedback. Int J Hum Comput Interact 25(6):506–529 CrossRefGoogle Scholar
  53. Lotte F, Renard Y, Lécuyer A (2008) Self-paced brain-computer interaction with virtual worlds: A quantitative and qualitative study “out of the lab”. In: Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course, pp 373–378 Google Scholar
  54. Lucas HC (1975) Why Information Systems Fail. Columbia University Press, New York Google Scholar
  55. Mandryk RL, Inkpen KM, Calvert TW (2006) Using psychophysiological techniques to measure user experience with entertainment technologies. Behav Inf Technol 25(2):141–158 CrossRefGoogle Scholar
  56. Marosi E, Bazán O, Yañez G, Bernal J, Fernández T, Rodríguez M, Silva J, Reyes A (2002) Narrow-band spectral measurements of EEG during emotional tasks. Int J Neurosci 112(7):871–891 CrossRefGoogle Scholar
  57. Martinez P, Bakardjian H, Cichocki A (2007) Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm. Comput Intell Neurosci 2007(1):13 Google Scholar
  58. Mason SG, Bohringer R, Borisoff JF, Birch GE (2004) Real-time control of a video game with a direct brain-computer interface. J Clin Neurophysiol 21(6):404 CrossRefGoogle Scholar
  59. McFarland D, Miner L, Vaughan T, Wolpaw J (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12(3):177–186 CrossRefGoogle Scholar
  60. Microsoft® (2009) Project natal. Internet http://www.xbox.com/en-US/live/projectnatal/
  61. Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 8(2):211–214 CrossRefGoogle Scholar
  62. Mingyu L, Jue W, Nan Y, Qin Y (2005) Development of EEG biofeedback system based on virtual reality environment. In: Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. IEEE-EMBS 2005, pp 5362–5364 Google Scholar
  63. Morris JD (1995) SAM: The Self-Assessment Manikin. An efficient cross-cultural measurement of emotional response (observations). J Advert Res 35(6):63–68 Google Scholar
  64. Mühl C, Heylen D (2009) Cross-modal elicitation of affective experience. In: Proceedings of the Workshop on Affective Brain-Computer Interfaces, pp 42–53 Google Scholar
  65. Mühl C, Gürkök H, Plass-Oude Bos D, Scherffig L, Thurlings ME, Duvinage M, Elbakyan AA, Kang SW, Poel M, Heylen D (2010) Bacteria Hunt: A multimodal, multiparadigm BCI game. In: Proceedings of the 5th International Summer Workshop on Multimodal Interfaces eNTERFACE’09, to appear Google Scholar
  66. Müller MM, Keil A, Gruber T, Elbert T (1999) Processing of affective pictures modulates right-hemispheric gamma band EEG activity. J Clin Neurophysiol 110(11):1913–1920 Google Scholar
  67. Müller-Tomfelde C (2007) Dwell-based pointing in applications of human computer interaction. In: Proceedings of the 11th IFIP TC13 International Conference on Human-Computer Interaction (INTERACT 2007), vol 4662. Springer, Berlin, pp 560–573 CrossRefGoogle Scholar
  68. Nacke L, Lindley CA (2008) Flow and immersion in first-person shooters: Measuring the player’s gameplay experience. In: Proceedings of the 2008 Conference on Future Play. Future Play ’08. ACM, New York, NY, USA, pp 81–88 CrossRefGoogle Scholar
  69. Nelson WT, Hettinger LJ, Cunningham JA, Roe MM, Haas MW, Dennis LB (1997) Navigating through virtual flight environments using brain-body-actuated control. In: Proceedings of the IEEE 1997 Virtual Reality Annual International Symposium, pp 30–37 Google Scholar
  70. Nielsen J (1993) Usability Engineering. Morgan Kaufmann Publishers, San Mateo MATHGoogle Scholar
  71. Nielsen J (1996) Usability metrics: Tracking interface improvements. IEEE Softw 13(6):12–13 Google Scholar
  72. Nijholt A, Tan D (2007) Playing with your brain: Brain-computer interfaces and games. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology. ACM, New York, NY, USA, pp 305–306 CrossRefGoogle Scholar
  73. Nijholt A, van Erp JBF, Heylen DKJ (2008a) Braingain: BCI for HCI and games. In: Proceedings of the AISB Symposium Brain Computer Interfaces and Human Computer Interaction: A Convergence of Ideas, The Society for the Study of Artificial Intelligence and Simulation of Behaviour, pp 32–35 Google Scholar
  74. Nijholt A, Tan D, Pfurtscheller G, Brunner C, Millán JdR, Allison B, Graimann B, Popescu F, Blankertz B, Müller KR (2008b) Brain-computer interfacing for intelligent systems. IEEE Intell Syst, pp 76–83 Google Scholar
  75. Nijholt A, Oude Bos D, Reuderink B (2009) Turning shortcomings into challenges: Brain-computer interfaces for games. Entertain Comput 1(2):85–94 CrossRefGoogle Scholar
  76. Obaid M, Han C, Billinghurst M (2008) “Feed the fish”: An affect-aware game. In: IE ’08: Proceedings of the 5th Australasian Conference on Interactive Entertainment. ACM, New York, NY, USA, pp 1–6 CrossRefGoogle Scholar
  77. Oude Bos D, Reuderink B (2008) BrainBasher: A BCI game. In: Extended Abstracts of the International Conference on Fun and Games 2008, Eindhoven, Netherlands. Eindhoven University of Technology, Eindhoven, The Netherlands, pp 36–39 Google Scholar
  78. Palke A (2004) Brainathlon: Enhancing brainwave control through brain-controlled game play. Master’s thesis, Mills College Google Scholar
  79. Picard RW (1997) Affective Computing. The MIT Press, Cambridge, MA, USA Google Scholar
  80. Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell 23(10):1175–1191 CrossRefGoogle Scholar
  81. Pineda JA, Silverman DS, Vankov A, Hestenes J (2003) Learning to control brain rhythms: Making a brain-computer interface possible. IEEE Trans Neural Syst Rehabil Eng 11(2):181–184 CrossRefGoogle Scholar
  82. Pope AT, Palsson OS (2001) Helping video games “rewire our minds”. Tech. rep., NASA Langley Research Center Google Scholar
  83. Reuderink B, Nijholt A, Poel M (2009) Affective Pacman: A frustrating game for brain-computer interface experiments. In: 3rd International Conference on Intelligent Technologies for Interactive Entertainment. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, vol 9. Springer, Berlin, pp 221–227 CrossRefGoogle Scholar
  84. Rushinek A, Rushinek SF (1986) What makes users happy? Commun ACM 29(7):594–598 CrossRefGoogle Scholar
  85. Saari T, Turpeinen M, Kuikkaniemi K, Kosunen I, Ravaja N (2009) Emotionally adapted games—An example of a first person shooter. In: Human-Computer Interaction. Interacting in Various Application Domains. Lecture Notes in Computer Science, vol 5613. Springer, Berlin, pp 406–415 CrossRefGoogle Scholar
  86. Sander D, Grandjean D, Scherer KR (2005) A systems approach to appraisal mechanisms in emotion. Neural Netw 18(4):317–352 CrossRefGoogle Scholar
  87. Scherer R, Schlögl A, Lee F, Bischof H, Janša J, Pfurtscheller G (2007) The self-paced Graz brain-computer interface: Methods and applications. Comput Intell Neurosci 2007:9 CrossRefGoogle Scholar
  88. Shibasaki H, Hallett M (2006) What is the bereitschaftspotential? Clin Neurophysiol 117(11):2341 –2356 CrossRefGoogle Scholar
  89. Shim BS, Lee SW, Shin JH (2007) Implementation of a 3-dimensional game for developing balanced brainwave. In: Proceedings of the 5th ACIS International Conference on Software Engineering Research, Management & Applications. IEEE Computer Society, Los Alamitos, CA, USA, pp 751–758 Google Scholar
  90. Sobell N, Trivich M (1989) Brainwave drawing game. In: A Delicate Balance: Technics, Culture and Consequences. IEEE Los Angeles Council, Torrance, CA, USA, pp 360–362 Google Scholar
  91. Solovey ET, Girouard A, Chauncey K, Hirshfield LM, Sassaroli A, Zheng F, Fantini S, Jacob RJ (2009) Using fNIRS brain sensing in realistic HCI settings: Experiments and guidelines. In: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology. ACM, New York, NY, USA, pp 157–166 CrossRefGoogle Scholar
  92. Tangermann MW, Krauledat M, Grzeska K, Sagebaum M, Blankertz B, Vidaurre C, Müller KR (2009) Playing pinball with non-invasive BCI. In: Advances in Neural Information Processing Systems 21. MIT Press, Cambridge, MA, USA, pp 1641–1648 Google Scholar
  93. Tijs T, Brokken D, Ijsselsteijn W (2009) Creating an emotionally adaptive game. In: Proceedings of the 7th International Conference on Entertainment Computing. Lecture Notes in Computer Science, vol 5309. Springer, Berlin, pp 122–133 Google Scholar
  94. Tonet O, Marinelli M, Citi L, Rossini PM, Rossini L, Megali G, Dario P (2008) Defining brain-machine interface applications by matching interface performance with device requirements. J Neurosci Methods 167(1):91–104 CrossRefGoogle Scholar
  95. Tschuor L (2002) Computer game control through relaxation-induced EEG changes. Student project report Google Scholar
  96. Tyson P (1987) Task-related stress and EEG alpha biofeedback. Appl Psychophysiol Biofeedback 12(2):105–119 Google Scholar
  97. van den Broek E, Janssen JH, Westerink J, Healey JA (2009) Prerequisites for affective signal processing (ASP). In: Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, pp 426–433 Google Scholar
  98. van de Laar B, Bos DO, Reuderink B, Heylen D (2009) Actual and imagined movement in BCI gaming. In: Proceedings of the International Conference on Artificial Intelligence and Simulation of Behaviour, pp 9–16 Google Scholar
  99. van Reekum CM, Johnstone T, Banse R, Etter A, Wehrle T, Scherer KR (2004) Psychophysiological responses to appraisal dimensions in a computer game. Cogn Emot 18(5):663–688 CrossRefGoogle Scholar
  100. Vidal JJ (1977) Real-time detection of brain events in EEG. Proc IEEE 65(5):633–641 MathSciNetCrossRefGoogle Scholar
  101. Vidaurre C, Schlögl A, Cabeza R, Scherer R, Pfurtscheller G (2006) A fully on-line adaptive BCI. IEEE Trans Biomed Eng 53(6):1214–1219 CrossRefGoogle Scholar
  102. Wang C, Zhang H, Phua KS, Dat TH, Guan C (2007) Introduction to NeuroComm: A platform for developing real-time EEG-based brain-computer interface applications. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 4703–4706 Google Scholar
  103. Witmer B, Singer M (1998) Measuring presence in virtual environments: A presence questionnaire. Presence 7(3):225–240 CrossRefGoogle Scholar
  104. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791 CrossRefGoogle Scholar
  105. Zander TO, Kothe C, Welke S, Roetting M (2009) Utilizing secondary input from passive brain-computer interfaces for enhancing human-machine interaction. In: Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. Lecture Notes in Computer Science, vol 5638. Springer, Berlin, pp 759–771 CrossRefGoogle Scholar
  106. Zeng Z, Pantic M, Roisman GI, Huang TS (2007) A survey of affect recognition methods: Audio, visual and spontaneous expressions. In: Proceedings of the 9th International Conference on Multimodal Interfaces. ACM, New York, NY, USA, pp 126–133 CrossRefGoogle Scholar
  107. Zhao Q, Zhang L, Cichocki A (2009) EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chin Sci Bull 54(1):78–87 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Danny Plass-Oude Bos
    • 1
  • Boris Reuderink
    • 1
  • Bram van de Laar
    • 1
  • Hayrettin Gürkök
    • 1
  • Christian Mühl
    • 1
  • Mannes Poel
    • 1
  • Anton Nijholt
    • 1
  • Dirk Heylen
    • 1
  1. 1.Faculty of EEMCSHuman Media Interaction, University of TwenteEnschedeThe Netherlands

Personalised recommendations