Granger Causality: Theory and Applications

Part of the Computational Biology book series (COBO, volume 15)


Bayesian Network Granger Causality Exogenous Input Noise Covariance Matrix Dynamic Causal Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by grants from EPRSC (UK, CARMEN EP/E002331/1) and EU grant (BION) and NSFC (China).


  1. 1.
    R. Aebersold, L.E. Hood, and J.D. Watts. Equipping scientists for the new biology. Nat Biotechnol, 18(4):359, 2000. CrossRefGoogle Scholar
  2. 2.
    H. Akaike. A new look at the statistical model identification. Autom Control, IEEE Trans, 19(6):716–723, 1974. MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    U. Alon. Biological networks: the tinkerer as an engineer. Science, 301(5641):1866–1867, 2003. CrossRefGoogle Scholar
  4. 4.
    D. Anastassiou. Computational analysis of the synergy among multiple interacting genes. Mol Syst Biol, 3:83, 2007. CrossRefGoogle Scholar
  5. 5.
    C. Andrieu, N. de Freitas, A. Doucet, and M.I. Jordan. An introduction to MCMC for machine learning. Mach Learn, V50(1):5–43, 2003. CrossRefGoogle Scholar
  6. 6.
    W.L. Buntine. Operations for learning with graphical models. J Artif Intell Res, 2:159, 1994. Google Scholar
  7. 7.
    D.M. Camacho and J.J. Collins. Systems biology strikes gold. Cell, 137(1):24–26, 2009. CrossRefGoogle Scholar
  8. 8.
    I. Cantone, L. Marucci, F. Iorio, M.A. Ricci, V. Belcastro, M. Bansal, S. Santini, M. di Bernardo, D. di Bernardo, and M.P. Cosma. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell, 137(1):172–181, 2009. CrossRefGoogle Scholar
  9. 9.
    B. Chance, R.W. Estabrook, and A. Ghosh. Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc Natl Acad Sci, 51(6):1244–1251, 1964. CrossRefGoogle Scholar
  10. 10.
    Y. Chen, S.L. Bressler, and M. Ding. Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods, 150(2):228–237, 2006. MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.J. Chrobak and G. Buzsaki. Gamma oscillations in the entorhinal cortex of the freely behaving rat. J Neurosci, 18:388–398, 1998. Google Scholar
  12. 12.
    M. Ding, Y. Chen, and S.L. Bressler. Granger causality: Basic theory and application to neuroscience. In J. Timmer, B. Schelter, M. Winterhalder, editors, Handbook of Time Series Analysis, pages 451–474. Wiley-VCH, Weinheins, 2006. Google Scholar
  13. 13.
    M.R. Doyle, S.J. Davis, R.M. Bastow, H.G. McWatters, L. Kozma-Bognár, F. Nagy, A.J. Milla, and R.M. Amasino. The elf4 gene controls circadian rhythms and flowering time in arabidopsis thaliana. Nature, 1419:74–77, 2002. CrossRefGoogle Scholar
  14. 14.
    T. Fawcett. An introduction to ROC analysis. Pattern Recogn Lett, 27(8):861–874, 2006. MathSciNetCrossRefGoogle Scholar
  15. 15.
    J.F. Feng, D.Y. Yi, R. Krishna, S.X. Guo, and V. Buchanan-Wollaston. Listen to genes: dealing with microarray data in the frequency domain. PLoS ONE, 4(4):e5098+, 2009. CrossRefGoogle Scholar
  16. 16.
    K. Friston. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol, 7(2):e1000033+, 2009. CrossRefGoogle Scholar
  17. 17.
    K.J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling. NeuroImage, 19(4):1273–1302, 2003. CrossRefGoogle Scholar
  18. 18.
    T.S. Gardner, D. di Bernardo, D. Lorenz, and J.J. Collins. Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301(5629):102–105, 2003. CrossRefGoogle Scholar
  19. 19.
    T. Ge, K.M. Kendrick, and J.F. Feng. A unified dynamic and granger causal model approach demonstrates brain hemispheric differences during face recognition learning. PLoS Comput Biol, 2009, submitted. Google Scholar
  20. 20.
    J.F. Geweke. Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc, 77(378):304–313, 1982. MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    J.F. Geweke. Measures of conditional linear-dependence and feedback between time series. J Am Stat Assoc, 79(388):907–915, 1984. MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    B. Gourévitch, R.L. Bouquin-Jeannès, and G. Faucon. Linear nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern, 95(4):349–369, 2006. MATHCrossRefGoogle Scholar
  23. 23.
    C. Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37:424–438, 1969. CrossRefGoogle Scholar
  24. 24.
    C. Granger. Testing for causality: a personal viewpoint. J Econ Dynam Control, 2:329–352, 1980. MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Guo, A.K. Seth, K.M. Kendrick, C. Zhou, and J.F. Feng. Partial Granger causality–eliminating exogenous inputs and latent variables. J Neurosci Methods, 172(1):79, 2008. CrossRefGoogle Scholar
  26. 26.
    S. Guo, J. Wu, M. Ding, and J.F. Feng. Uncovering interactions in the frequency domain. PLoS Comput Biol, 4(5):e1000087, 2008. MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. He. Estimation of the mixed AR and hidden periodic model. Acta Math Appl Sin Engl Ser, 13(2):196–208, 1997. MATHCrossRefGoogle Scholar
  28. 28.
    E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach. Systems biology in practice: concepts, implementation and application, 2005. Google Scholar
  29. 29.
    C. Ladroue, S.X. Guo, K. Kendrick, and J.F. Feng. Beyond element-wise interactions: identifying complex interactions in biological processes. PLoS ONE, 4(9):e6899, 2009. CrossRefGoogle Scholar
  30. 30.
    J.C. Locke, L. Kozma-Bognar, P.D. Gould, B. Feher, E. Kevei, F. Nagy, M.S. Turner, A. Hall, and A.J. Millar. Experimental validation of a predicted feedback loop in the multi-oscillator clock of arabidopsis thaliana. Mol Syst Biol, 2:59, 2006. CrossRefGoogle Scholar
  31. 31.
    H.G. McWatters, E. Kolmos, A. Hall, M.R. Doyle, R.M. Amasino, P. Gyula, F. Nagy, A.J. Millar, and S.J. Davis. ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol, 144(1):391, 2007. CrossRefGoogle Scholar
  32. 32.
    D.S. Moore. The Basic Practice of Statistics. Freeman, New York, 2003. Google Scholar
  33. 33.
    M. Morf, A. Vieira, D.T.L. Lee, and T. Kailath. Recursive multichannel maximum entropy spectral estimation. Geosci Electron IEEE Trans, 16(2):85–94, 1978. MathSciNetCrossRefGoogle Scholar
  34. 34.
    S. Mukherjee and T.P. Speed. Network inference using informative priors. Proc Natl Acad Sci, 105(38):14313–14318, 2008. CrossRefGoogle Scholar
  35. 35.
    C.J. Needham, J.R. Bradford, A.J. Bulpitt, and D.R. Westhead. A primer on learning in Bayesian networks for computational biology. PLoS Comput Biol, 3(8):e129, 2007. CrossRefGoogle Scholar
  36. 36.
    A. Neumaier and T. Schneider. Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw, 27(1):27–57, 2001. MATHCrossRefGoogle Scholar
  37. 37.
    J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge, 2000. MATHGoogle Scholar
  38. 38.
    J. Quackenbush. Computational analysis of microarray data. Nat Rev Genet, 2(6):418–427, 2001. CrossRefGoogle Scholar
  39. 39.
    K. Sachs, O. Perez, D. Pe’er, D.A. Lauffenburger, and G.P. Nolan. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005. CrossRefGoogle Scholar
  40. 40.
    M. Schelter, B. an Winterhalderm, and J. Timmer. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications. Wiley-VCH, Weinheim, 2006. MATHCrossRefGoogle Scholar
  41. 41.
    T.F. Schultz and S.A. Kay. Circadian clocks in daily and seasonal control of development. Science, 301(5631):326–328, 2003. CrossRefGoogle Scholar
  42. 42.
    T.P. Speed. Statistical Analysis of Gene Expression Microarray Data. CRC Press, Boca Raton, 2003. MATHCrossRefGoogle Scholar
  43. 43.
    A.N. Stepanova and J.M. Alonso. Arabidopsis ethylene signaling pathway. Science, 276:1872–1874, 2005. Google Scholar
  44. 44.
    G.C. Tiao and M.R. Grupe. Hidden periodic autoregressive-moving average models in time series data. Biometrika, 67(2):365–373, 1980. MathSciNetMATHGoogle Scholar
  45. 45.
    H.R. Ueda. Systems biology flowering in the plant clock field. Mol Syst Biol, 2:60, 2006. CrossRefGoogle Scholar
  46. 46.
    H.R. Ueda, W.B. Chen, A. Adachi, H. Wakamatsu, S. Hayashi, T. Takasugi, M. Nagano, K. Nakahama, Y. Suzuki, S. Sugano, M. Iino, Y. Shigeyoshi, and S. Hashimoto. A transcription factor response element for gene expression during circadian night. Nature, 418(6897):534–539, 2002. CrossRefGoogle Scholar
  47. 47.
    N. Wiener. The theory of prediction. Mod Math Eng Ser, 1:125–139, 1956. Google Scholar
  48. 48.
    J.H. Wu, K. Kendrick, and J.F. Feng. Detecting correlation changes in electrophysiological data. J Neurosci Methods, 161(1):155–165, 2007. CrossRefGoogle Scholar
  49. 49.
    J.H. Wu, X.G. Liu, and J.F. Feng. Detecting causality between different frequencies. J Neurosci Methods, 167(2):367–375, 2008. CrossRefGoogle Scholar
  50. 50.
    J.H. Wu, J.L. Sinfield, and J.F. Feng. Impact of environmental inputs on reverse-engineering approach to network structures. BMC Systems Biology, 3:113, 2009. CrossRefGoogle Scholar
  51. 51.
    J. Yu, A.V. Smith, P.P. Wang, and A.J. Hartemink. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20(18):3594–3603, 2004. CrossRefGoogle Scholar
  52. 52.
    C.L. Zou and J.F. Feng. Granger causality vs. dynamic bayesian network inference: a comparative study. BMC Bioinform, 10(1):122, 2009. CrossRefGoogle Scholar
  53. 53.
    C.L. Zou, C. Ladroue, S.X. Guo, and J.F. Feng. Identifying interactions in the time and frequency domains in local and global networks. BMC Bioinform, 2010, under revision. Google Scholar
  54. 54.
    C.L. Zou, K.M. Kendrick, and J.F. Feng. The fourth way: Granger causality is better than the three other reverse-engineering approaches. Cell, 2009.
  55. 55.
    M. Zylka, L. Shearman, J. Levine, X. Jin, D. Weaver, and S. Reppert. Molecular analysis of mammalian timeless. Neuron, 21(5):1115–1122, 1998. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Shuixia Guo
    • 1
  • Christophe Ladroue
    • 2
  • Jianfeng Feng
    • 1
    • 2
  1. 1.Mathematics and Computer Science CollegeHunan Normal UniversityChangshaP.R. China
  2. 2.Department of Computer Science and MathematicsWarwick UniversityCoventryUK

Personalised recommendations