Macroscopic Fatigue Failure Theories for Multiaxial Stress States

Part of the Engineering Materials and Processes book series (EMP)


The static and fatigue behaviors of composite laminates depend on the applied loading and the resulting stress state. Simple and fast uniaxial experiments can characterize the material under such loading. However, the situation is much more complicated when complex stress states develop in the material. The setting up and realization of multiaxial experimental programs are complicated and the results not very reliable. Therefore, it is necessary to establish methods that can simulate the multiaxial fatigue behavior of composite laminates and estimate their fatigue life under complex stress states. This chapter focuses on the presentation of available macroscopic fatigue failure theories that take into account the synergistic effect of all stress tensor components on the strength and fatigue life of the examined material. A comparison of the predictive ability of the examined fatigue theories is also presented based on data from Chap. 2, and other data found in the literature.


  1. 1.
    Draft IEC 61400–1, Ed.2 (88/98/FDIS): ‘Wind turbine generator systems–Part 1: Safety requirements’, 1998Google Scholar
  2. 2.
    Germanischer Lloyd, ‘Rules and regulations, IV–Non–marine technology’, PART 1–WIND ENERGY, 1993Google Scholar
  3. 3.
    T.P. Philippidis, A.P. Vassilopoulos, Life prediction methodology for GFRP laminates under spectrum loading. Compos. Part A–Appl. Sci. 35(6), 657–666 (2004)CrossRefGoogle Scholar
  4. 4.
    J.A. Collins, Failure of materials in mechanical design-analysis, prediction prevention. (Wiley, New York, 1993)Google Scholar
  5. 5.
    R.F. Gibson, Principles of Composite Material Mechanics (McGraw-Hill Inc., New York, 1994)Google Scholar
  6. 6.
    O. Hoffman, The brittle strength of orthotropic materials. J. Compos. Mater. 1(2), 200–206 (1967)CrossRefGoogle Scholar
  7. 7.
    S.W. Tsai, E.M. Wu, A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)CrossRefGoogle Scholar
  8. 8.
    Z. Hashin, A. Rotem, A fatigue failure criterion for fibre-reinforced materials. J. Compos. Mater. 7, 448–464 (1973)CrossRefGoogle Scholar
  9. 9.
    A. Rotem, Fatigue failure of multidirectional laminate. AIAA J. 17(3), 271–277 (1979)CrossRefGoogle Scholar
  10. 10.
    M.J. Owen, J.R. Griffiths, Evaluation of biaxial failure surfaces for a glass fabric reinforced polyester resin under static and fatigue loading. J. Mater. Sci. 13(7), 1521–1537 (1978)CrossRefGoogle Scholar
  11. 11.
    T. Fujii, F. Lin, Fatigue behavior of a plain-woven glass fabric laminate under tension/torsion biaxial loading. J. Compos. Mater. 29(5), 573–590 (1995)CrossRefGoogle Scholar
  12. 12.
    D.F. Sims,V.H. Brogdon, in Fatigue Behavior of Composites under Different Loading Modes, eds. by K.L. Reifsnider, K.N. Lauraitis. Fatigue of filamentary materials, (ASTM STP 636, 1977), pp. 185–205Google Scholar
  13. 13.
    M.-H.R. Jen, C.-H. Lee, Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: experimental. Int. J. Fatigue 20(9), 605–615 (1998)CrossRefGoogle Scholar
  14. 14.
    M.-H.R. Jen, C.-H. Lee, Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: Formulation. Int. J. Fatigue 20(9), 617–629 (1998)CrossRefGoogle Scholar
  15. 15.
    S.W. Tsai, H.T. Hahn, Introduction to Composite Materials (Technomic, Lancaster, 1980)Google Scholar
  16. 16.
    T.P. Philippidis, A.P. Vassilopoulos, Fatigue strength prediction under multiaxial stress. J. Compos. Mater. 33(17), 1578–1599 (1999)CrossRefGoogle Scholar
  17. 17.
    T.P. Philippidis, A.P. Vassilopoulos, Complex stress state effect on fatigue life of GRP laminates. Part II, Theoretical formulation. Int. J. Fatigue 24(8), 825–830 (2002)CrossRefGoogle Scholar
  18. 18.
    M. Kawai, A phenomenological model for off-axis fatigue behavior of unidirectional polymer matrix composites under different stress ratios. Compos. Part A-Appl. S 35(7–8), 955–963 (2004)CrossRefGoogle Scholar
  19. 19.
    Z. Fawaz, F. Ellyin, Fatigue failure model for fibre-reinforced materials under general loading conditions. J. Compos. Mater. 28(15), 1432–1451 (1994)CrossRefGoogle Scholar
  20. 20.
    M. Quaresimin, L. Susmel, R. Talerja, Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int. J. Fatigue 32(1), 2–16 (2009)CrossRefGoogle Scholar
  21. 21.
    H. El Kadi, F. Ellyin, Effect of stress ratio on the fatigue failure of fiberglass reinforced epoxy laminae. Composites 25(10), 917–924 (1994)CrossRefGoogle Scholar
  22. 22.
    M.M. Shokrieh, F. Taheri-Behrooz, A unified fatigue life model for composite materials. Compos. Struct. 75(1–4), 444–450 (2006)CrossRefGoogle Scholar
  23. 23.
    R.S. Sandhu, R.L. Gallo, G.P. Sendeckyj, in Initiation and Accumulation of Damage in Composite Laminates, ed. by I.M. Daniel (ASTM STP 787, 1982), pp. 163–182Google Scholar
  24. 24.
    J. Awerbuch, H.T. Hahn, in Fatigue of Fibrous Composite Materials. ed. by K.N. Lauraitis. Off-axis fatigue of graphite/epoxy composites, (ASTM STP 723, 1981), pp. 243–273Google Scholar
  25. 25.
    S. Lee, M. Munro, Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique. Composites 17(1), 13–22 (1986)CrossRefGoogle Scholar
  26. 26.
    S.W. Fowser, R.B. Pipes, D.W. Wilson, On the determination of laminate and lamina shear response by tension tests. Compos. Sci. Technol. 26, 31–36 (1986)CrossRefGoogle Scholar
  27. 27.
    A. Smits, D. Van Hemelrijck, T.P. Philippidis, A. Cardon, Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates. Compos. Sci. Technol. 66(7–8), 964–975 (2006)CrossRefGoogle Scholar
  28. 28.
    M.J. Hinton, A.S. Kaddour, P.D. Soden, Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise, a Composite Science and Technology Compendium (Elsevier, Amsterdam, 2004)Google Scholar
  29. 29.
    T.P. Philippidis, P.S. Theocaris, Failure prediction of fibre reinforced laminates under hygrothermal and mechanical in-plane loads. Adv. Pol. Tech. 12(3), 271–279 (1993)CrossRefGoogle Scholar
  30. 30.
    A.P. Vassilopoulos, R. Sarfaraz, B.D. Manshadi, T. Keller, A computational tool for the life prediction of GFRP laminates under irregular complex stress states: Influence of the fatigue failure criterion. Comp. Mat. Sci. 49(3), 483–491 (2010). 10.1016/j.commatsci.2010.05.039CrossRefGoogle Scholar
  31. 31.
    R.P.L. Nijssen, O. Krause, T.P. Philippidis, Benchmark of lifetime prediction methodologies. Optimat Blades technical report, 2004, OB_TG1_R012 rev.001,
  32. 32.
    S.D. Downing, D.F. Socie, Simple rainflow algorithms. Int. J. Fatigue 4(1), 31–40 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  1. 1.Composite Construction Laboratory (CCLab)École Polytechnique Fédérale De Lausanne (EPFL), School of Architecture, Civil and Environment (ENAC)LausanneSwitzerland

Personalised recommendations