Advertisement

Parameterization of 3D Conformal Transformations in Conformal Geometric Algebra

  • Hongbo LiEmail author
Chapter

Abstract

Conformal geometric algebra is a powerful mathematical language for describing and manipulating geometric configurations and their conformal transformations. By providing a 5D algebraic representation of 3D geometric configurations, conformal geometric algebra proves to be very helpful in pose estimation, motion design, and neuron-based machine learning (Bayro-Corrochano et al., J. Math. Imaging Vis. 24(1):55–81, 2006; Dorst et al., Geometric Algebra for Computer Science, Morgan Kaufmann, San Mateo, 2007; Hildenbrand, Comput. Graph. 29(5):795–803, 2005; Lasenby, Computer Algebra and Geometric Algebra with Applications, LNCS, vol. 3519, pp. 298–328, Springer, Berlin, 2005; Li et al., Geometric Computing with Clifford Algebras, pp. 27–60, Springer, Heidelberg, 2001; Mourrain and Stolfi, Invariant Methods in Discrete and Computational Geometry, pp. 107–139, Reidel, Dordrecht, 1995; Rosenhahn and Sommer, J. Math. Imaging Vis. 22:27–70, 2005; Sommer et al., Computer Algebra and Geometric Algebra with Applications, pp. 278–297, Springer, Berlin, 2005). In this chapter, we present some theoretical results on conformal geometric algebra which should prove to be useful in computer applications. The focus is on parameterizing 3D conformal transformations with either quaternionic Vahlen matrices or polynomial Cayley transform from the Lie algebra to the Lie group of conformal transformations in space.

Keywords

Conformal Transformation Clifford Algebra Null Vector Geometric Algebra Positive Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.V.: Möbius transformations in ℝn expressed through 2×2 matrices of Clifford numbers. Complex Var. 5, 215–224 (1986) MathSciNetGoogle Scholar
  2. 2.
    Angles, P.: Conformal Groups in Geometry and Spin Structures. Birkhäuser, Basel (2008) zbMATHCrossRefGoogle Scholar
  3. 3.
    Bayro-Corrochano, E., Reyes-Lozano, L., Zamora-Esquivel, J.: Conformal geometric algebra for robotic vision. J. Math. Imaging Vis. 24(1), 55–81 (2006) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kaufmann, San Mateo (2007) Google Scholar
  5. 5.
    Helmstetter, J., Micali, A.: Quadratic Mappings and Clifford Algebras. Birkhäuser, Basel (2000) Google Scholar
  6. 6.
    Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Kluwer, Dordrecht (1984) zbMATHGoogle Scholar
  7. 7.
    Hildenbrand, D.: Geometric computing in computer graphics using conformal geometric algebra. Comput. Graph. 29(5), 795–803 (2005) CrossRefGoogle Scholar
  8. 8.
    Lasenby, A.: Recent applications of conformal geometric algebra. In: Li, H., et al. (eds.) Computer Algebra and Geometric Algebra with Applications. LNCS, vol. 3519, pp. 298–328. Springer, Berlin (2005) Google Scholar
  9. 9.
    Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008) zbMATHCrossRefGoogle Scholar
  10. 10.
    Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 27–60. Springer, Heidelberg (2001) Google Scholar
  11. 11.
    Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  12. 12.
    Maks, J.: Clifford algebras and Möbius transformations. In: Micali, A., et al. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, pp. 57–63. Kluwer, Dordrecht (1992) Google Scholar
  13. 13.
    Mourrain, B., Stolfi, N.: Computational symbolic geometry. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 107–139. Reidel, Dordrecht (1995) Google Scholar
  14. 14.
    Riesz, M.: Clifford Numbers and Spinors, 1958. Kluwer, Dordrecht (1993). From lecture notes made in 1957–1958, edited by Bolinder, E. and Lounesto, P. Google Scholar
  15. 15.
    Rosenhahn, B., Sommer, G.: Pose estimation in conformal geometric algebra I, II. J. Math. Imaging Vis. 22, 27–70 (2005) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ryan, J.: Conformal Clifford manifolds arising in Clifford analysis. Proc. R. Ir. Acad. A 85, 1–23 (1985) zbMATHGoogle Scholar
  17. 17.
    Selig, J.M.: Geometrical Methods in Robotics. Springer, New York (1996) zbMATHGoogle Scholar
  18. 18.
    Sommer, G., Rosenhahn, B., Perwass, C.: Twists—an operational representation of shape. In: Li, H., et al. (eds.) Computer Algebra and Geometric Algebra with Applications. LNCS, vol. 3519, pp. 278–297. Springer, Berlin (2005) Google Scholar
  19. 19.
    White, N.: Grassmann–Cayley algebra and robotics applications. In: Bayro-Corrochano, E. (ed.) Handbook of Geometric Computing, pp. 629–656. Springer, Heidelberg (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Mathematics Mechanization Key LaboratoryAcademy of Mathematics and Systems Science, Chinese Academy of SciencesBeijingChina

Personalised recommendations