Advertisement

Physical Modeling of Turbocharged Engines and Parameter Identification

  • Lars Eriksson
  • Johan Wahlström
  • Markus Klein
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 402)

Abstract

The common theme in this chapter is physical modeling of engines and the subjects touch three topics in nonlinear engine models and parameter identification. First, a modeling methodology is described. It focuses on the gas and energy flows in engines and covers turbocharged engines. Examples are given where the methodology has been successfully applied, covering naturally aspirated engines and both single and dual stage turbocharged engines. Second, the modeling with the emphasis on models for EGR/VGT equipped diesel engine. The aim is to describe models that capture the essential dynamics and nonlinear behaviors and that are relatively small so that they can be utilized in model predictive control algorithms. Special emphasis is on the selection of the states. The third and last topic is related to parameter identification in gray-box models. A common issue is that parameters with physical interpretation often receive values that lie outside their admissible range during the identification. Regularization is discussed as a solution and methods for choosing the regularization parameter are described and highlighted.

Keywords

Diesel Engine Control Volume Actuator Dynamic Model Predictive Control Algorithm Variable Geometry Turbocharger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hendricks, E.: A compact, comprehensive model of large turbocharged, two-stroke diesel engines, SAE Paper 861190 (1986)Google Scholar
  2. 2.
    Hendricks, E., Sorenson, S.C.: Mean Value Modelling of Spark Ignition Engines, SAE Paper 900616 (1990)Google Scholar
  3. 3.
    Müller, M., Hendricks, E., Sorenson, S.C.: Mean Value Modelling of Turbocharged Spark Ignition Engines. SAE SP-1330 Modeling of SI and Diesel Engines (SAE Technical Paper 980784), pp. 125–145 (1998)Google Scholar
  4. 4.
    Hendricks, E.: Isothermal vs. adiabatic mean value SI engine models. In: 3rd IFAC Workshop, Advances in Automotive Control, Preprints, Karlsruhe, Germany, March 2001, pp. 373–378 (2001)Google Scholar
  5. 5.
    Eriksson, L.: Mean value models for exhaust system temperatures. SAE Transactions, Journal of Engines, 2002-01-0374 111(3) (September 2002)Google Scholar
  6. 6.
    Eriksson, L., Nielsen, L., Brugård, J., Bergström, J., Pettersson, F., Andersson, P.: Modeling and simulation of a turbo charged SI engine. Annual Reviews in Control 26(1), 129–137 (2002)CrossRefGoogle Scholar
  7. 7.
    Guzzella, L., Onder, C.H.: Introduction to Modeling and Control of Internal Combustion Engine Systems. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Kiencke, U., Nilsen, L.: Automotive Control Systems – For Engine, Driveline, and Vehicle, 2nd edn. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Eriksson, L.: Modeling and control of turbocharged SI and DI engines. Oil & Gas Science and Technology - Rev. IFP 62(4), 523–538 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Aquino, C.F.: Transient A/F control characteristics of the 6 liter central fuel injection engine. SAE Paper 810494 (1981)Google Scholar
  11. 11.
    Hendricks, E., Sorensen, S.C.: SI engine controls and mean value engine modeling, SAE Paper 910258 (1991)Google Scholar
  12. 12.
    Ault, B.A., Jones, V.K., Powell, J.D., Franklin, G.F.: Adaptive air-fuel ratio control of a spark-ignition engine. SAE SP-1029 (SAE Paper 940373), pp. 109–118 (1994)Google Scholar
  13. 13.
    Turin, R.C., Geering, H.P.: Model-based adaptive fuel control in an SI engine. SAE SP-1029 (SAE Paper 940374), pp. 119–128 (1994)Google Scholar
  14. 14.
    Bidan, P., Boverie, S., Chaumerliac, V.: Nonlinear control of a spark-ignition engine. IEEE Transactions on Control System Technology 3(1), 4–13 (1995)CrossRefGoogle Scholar
  15. 15.
    Jensen, P.B., Olsen, M.B., Poulsen, J., Hendricks, E., Fons, M., Jepsen, C.: A new family of nonlinear observers for SI engine air/fuel ratio control. SAE Paper 970615, pp. 91–101 (1997)Google Scholar
  16. 16.
    Guzzella, L., Amstuz, A.: Control of diesel engines. IEEE Control Systems (special issue on powertrain control) 18(5) (October 1998)Google Scholar
  17. 17.
    Andersson, P., Eriksson, L.: Mean-value observer for a turbocharged SI-engine. In: IFAC Symposium on Advances in Automotive Control, Universty of Salerno, Italy, April 19-23, pp. 146–151 (2004)Google Scholar
  18. 18.
    Deur, J., Ivanovic, V., Pavkovi, D., Jansz, M.: Identification and speed control of SI engine for idle operating mode. Number SAE Technical Paper 2004-01-0898 (2004)Google Scholar
  19. 19.
    Le Berr, F., Miche, M., Colin, G., Le Solliec, G., Lafossas, F.: Modelling of a turbocharged SI engine with variable camshaft timing for engine control purposes. SAE Technical paper 2006-01-3264 (2006)Google Scholar
  20. 20.
    Eriksson, L.: VehProLib - Vehicle propulsion library, library development issues. In: Proceedings of the 3rd International Modelica Conference, Linköping, November 3-4 (2003)Google Scholar
  21. 21.
    Tiller, M.: Introduction to Physical Modeling With Modelica. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  22. 22.
    Batteh, J., Tiller, M., Newman, C.: Simulation of engine systems in modelica. In: Proceedings of the 3rd International Modelica Conference, pp. 139–148 (2003)Google Scholar
  23. 23.
    Massey, B.: Mechanics of Fluids. Stanley Thornes, 7th edn. (1998)Google Scholar
  24. 24.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd revised edn. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  25. 25.
    Ellman, A., Piché, R.: A two regime orifice flow formula for numerical simulation. Journal of Dynamic Systems, Measurement, and Control 121(4), 721–724 (1999)CrossRefGoogle Scholar
  26. 26.
    Andersson, P.: Air Charge Estimation in Turbocharged Spark Ignition Engines. PhD thesis, Linköpings Universitet (December 2005)Google Scholar
  27. 27.
    Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill series in mechanical engineering. McGraw-Hill, New York (1988)Google Scholar
  28. 28.
    Watson, N., Janota, M.S.: Turbocharging the Internal Combustion Engine. The Macmillan Press Ltd., Basingstoke (1982)Google Scholar
  29. 29.
    Moraal, P., Kolmanovsky, I.: Turbocharger Modeling for Automotive Control Applications. SAE Technical Paper 1999-01-0908, pp. 309–322 (1999)Google Scholar
  30. 30.
    Sorenson, S.C., Hendrick, E., Magnusson, S., Bertelsen, A.: Compact and accurate turbocharger modeling for engine control. In: Electronic Engine Controls 2005 (SP-1975), number SAE Technical Paper 2005-01-1942 (2005)Google Scholar
  31. 31.
    Andersson, P., Eriksson, L.: Cylinder air charge estimator in turbocharged SI-engines. SAE Technical Paper 2004-01-1366 (2004)Google Scholar
  32. 32.
    Nilsson, Y., Eriksson, L., Gunnarsson, M.: Torque modeling for optimising fuel economy in variable compression engines. International Journal of Modeling, Identification and Control (IJMIC) 3(3) (2008)Google Scholar
  33. 33.
    Leufven, O., Eriksson, L.: Time to surge concept and surge control for acceleration performance. In: IFAC World Congress, Seoul, Korea (2008)Google Scholar
  34. 34.
    Thomasson, A., Eriksson, L., Leufven, O., Andersson, P.: Wastegate actuator modeling and model-based boost pressure control. Submitted to E-COSM 2009, IFAC Workshop on Engine and Powertrain Control, Simulation, and Modeling (2009)Google Scholar
  35. 35.
    Kolmanovsky, I.V., Stefanopoulou, A.G., Moraal, P.E., van Nieuwstadt, M.: Issues in modeling and control of intake flow in variable geometry turbocharged engines. In: Proceedings of 18th IFIP Conference on System Modeling and Optimization, Detroit (July 1997)Google Scholar
  36. 36.
    Jung, M.: Mean-Value Modelling and Robust Control of the Airpath of a Turbocharged Diesel Engine. PhD thesis, University of Cambridge (2003)Google Scholar
  37. 37.
    Winge Vigild, C.: The Internal Combustion Engine – Modeling, Estimation and Control Issues. PhD thesis, Technical University of Denmark (2001)Google Scholar
  38. 38.
    Wahlström, J.: Control of EGR and VGT for Emission Control and Pumping Work Minimization in Diesel Engines. PhD thesis, Linköping University (2009)Google Scholar
  39. 39.
    Jankovic, M., Jankovic, M., Kolmanovsky, I.: Constructive lyapunov control design for turbocharged diesel engines. In: IEEE Transactions on Control Systems Technology (2000)Google Scholar
  40. 40.
    Stefanopoulou, A.B., Kolmanovsky, I., Freudenberg, J.S.: Control of variable geometry turbocharged diesel engines for reduced emissions. IEEE Transactions on Control System Technology 8(4), 733–745 (2000)CrossRefGoogle Scholar
  41. 41.
    Ljung, L.: System Identification Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)Google Scholar
  42. 42.
    Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)zbMATHGoogle Scholar
  43. 43.
    Björk, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)Google Scholar
  44. 44.
    Eriksson. L.: Requirements for and a systematic method for identifying heat-release model parameters. Modeling of SI and Diesel Engines (SP-1330), SAE Technical Paper 980626, pp. 19–30 (1998)Google Scholar
  45. 45.
    Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing 14(6), 1487–1503 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    Klein, M.: Single-Zone Cylinder Pressure Modeling and Estimation for Heat Release Analysis of SI Engines. PhD thesis, Linköpings Universitet (September 2007)Google Scholar
  47. 47.
    Engl, H.W., Hanke, M., Ñeubauer, A.: Regularization of inverse problems. Kluwer Academic Publishers, London (1996)zbMATHGoogle Scholar
  48. 48.
    Miller, K.: Least squares methods for ill-posed problems with a prescribed bound. SIAM Journal on Mathematical Analysis 1(1), 52–74 (1970)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Morozov, V.A.: Methods for solving incorrectly posed problems. Springer, New York (1984)Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Lars Eriksson
    • 1
  • Johan Wahlström
    • 1
  • Markus Klein
    • 1
  1. 1.Vehicular Systems, Dept. of Electrical EngineeringLinköping UniversityLinköping

Personalised recommendations