Advertisement

Consensus Issues for Service Advertisement and Selection

  • Ping WangEmail author
  • Chi-Chun Lo
  • Leon Smalov
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Abstract

Several commercial service providers are offering analogous functional features in the advertisements of their services which lead to the problem of efficient selection for the potential service consumers. Generally, the service consumers and providers would have different views on the content of the services. How to reach consensus between the service consumers and providers is an interesting practical aspect of web service selection. This chapter proposes a Quality of Services (QoS) aware web service selection model based on fuzzy linear programming (FLP) technologies, in order to identify their differences on service alternatives, assist service providers and consumers in selecting the most suitable services with consideration of their expectations and preferences. By extending the LINMAP method (LINear programming techniques for Multidimensional Analysis of Preferences), developed by Srinivasan and Shocker, we can offer the optimal solution of consensual weight of QoS attribute and fuzzy positive ideal solution. Finally, two numerical examples are provided to illustrate the solution process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Anane, K.-M. Chao, and Y. Li Hybrid Composition of Web Services and Grid Services. In Proceedings of 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE-05), pages 426–431, 2005.Google Scholar
  2. 2.
    A. Ankolenkar, M. Burstein, J. Hobbs, et al. DAMLS: Web Service Description for the Semantic Web. In Proceedings of the International Semantic Web Conference (ISWC02), LNCS 2342, Springer, (2002).Google Scholar
  3. 3.
    W.-T. Balke and M. Wagner. Cooperative Discovery for User-centered Web Service Provisioning, 2002.Google Scholar
  4. 4.
    T. Berners-Lee. Weaving the Web. Harper San Francisco, 1999.Google Scholar
  5. 5.
    T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 2001Google Scholar
  6. 6.
    J. Borenstein and J. Fox. Semantic Discovery for Web Services. Web Services Journal, 3(4), 2003.Google Scholar
  7. 7.
    K.-M. Chao, M. Younas, C.-C. Lo, and T.-H. Tan. Fuzzy Matchmaking for Web Services. In Proceedings of the 19th IEEE Conference on Advanced Networks and Information Applications, IEEE CS, pages 721–726, 2005.Google Scholar
  8. 8.
    S.-H. Chen and C. L. Hwang. Fuzzy Multiple Attribute Decision Making Methods and Applications. Springer-Verlag, pages 90, 292–323, 1992.Google Scholar
  9. 9.
    C.T. Chen. Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment. Fuzzy set and Systems 114:1–9, 2000.CrossRefGoogle Scholar
  10. 10.
    W. D. Cook, M. Kress, and L. M. Seiford. A General Framework for Distance-based Consensus in Ordinal Ranking Models. European Journal of Operational Research, 96(2):392–397, 1997.CrossRefGoogle Scholar
  11. 11.
    W. D. Cook. Distance-based Consensus Models in Ordinal Preference Ranking. European Journal of Operational Research 172:369–385, 2006.MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Dan et al. Web Services on Demand: WSLA Driven Automated Management. IBM Systems Journal, 43:136–158, 2004.CrossRefGoogle Scholar
  13. 13.
    E. Herrera-Viedma, F. Herrera, and F. Chiclana. A Consensus Model for Multiperson Decision Making With Different Preference Structures IEEE Transactions on Systems, Man and Cybernetics 32:394–402, 2002.CrossRefGoogle Scholar
  14. 14.
    K. Hogg, P. Chilcott, M. Nolan, and B. Srinivasan. An Evaluation of Web Services in the Design of a B2B Application. In Proceedings of the 27th Conference on Australasian Computer Science, pages 331–340, 2004.Google Scholar
  15. 15.
    C.-L. Huang, K.-M. Chao, and C.-C. Lo. A Moderated Fuzzy Matchmaking for Web Services. 2 In Proceedings of the Fifth International Conference on Computer and Information Technology (CIT05), IEEE CS, pages 1116–1122, 2005.Google Scholar
  16. 16.
    C.-L. Huang, C.-C. Lo, and K.-M. Chao. Service Discovery through Multi-agent Consensus. In Proceedings of IEEE International Workshop on Service-Oriented System Engineering (SOSE 2005), pages 37–44, 2005.Google Scholar
  17. 17.
    C.L. Hwang and K. Yoon. Multiple Attribute Decision Making: Methods and Applications In Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, 1981.Google Scholar
  18. 18.
    C.-J. Hwang and M.J. Lin. Group Decision Making under Multiple Criteria: Methods & Applications. In Lectures notes in economics & mathematical systems, 281:36–45, 1987.Google Scholar
  19. 19.
    C. Jorge and S. Amit P. (Eds.). Semantic Web Services, In Processes and Applications, Springer, 2006.Google Scholar
  20. 20.
    J. Kacprzyk and M. Fedrizzi. A “soft” measurement of consensus in the setting of partial (fuzzy) preference. European Journal of Operational Research 34:316–326, 1988.MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Kaufmann and M. M. Gupta. Introduction to Fuzzy Arithmetic Theory and Application Van Nostrand Reinhold, New York, pages 2–35, 69–72, 1991.Google Scholar
  22. 22.
    M.-R. Koivunen and E. Miller. W3C Semantic Web Activity. In Proceedings of the Semantic Web, 2001.Google Scholar
  23. 23.
    K. C. Lee and J. H. Jeon, et al. QoS for Web Services: Requirements and Possible Approaches. W3C Working Group Note, http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/, 2003
  24. 24.
    D. F. Li and J. B. Yang. Fuzzy Linear Programming Technique for Multiattribute Group Decision Making in Fuzzy Environments. Information Sciences, 158:263–275, 2004.MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Lin, J. Xie, and H. Guo. Solving QoS-Driven Web Service Dynamic Composition as Fuzzy Constraint Satisfaction. In Proceedings of 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE-05), IEEE CS, pages 9–14, 2005.Google Scholar
  26. 26.
    W.-L. Lin, C.-C. Lo, K.-M. Chao, and M. Younas. Fuzzy Consensus on QoS in Web Services Discovery. In Proceedsings of the 20th International Conference on Advanced Information Networking and Applications (AINA 2006), pages 791–798, 2006.Google Scholar
  27. 27.
    Y. Liu, H. H. Ngu and L. Zeng. QoS Computation and Policing in Dynamic Web Service Selection. In Proceedings of 13th Int Conference World Wide Web 2004 pages 65–73, 2004.Google Scholar
  28. 28.
    H. Ludwig, A. Keller, et al. Web Service Level Agreement (WSLA) Language Specification v1.0. http://www.research.ibm.com/wsla/ WSLASpecV1-20030128.pdf, 2003.
  29. 29.
    A. Mani and A. Nagarajan. Understanding Quality of Service for Web Services. IBM Developer works, http://www-128.ibm.com/library/ developerworks/ws-quality.html, 2002.
  30. 30.
    D. L. McGuinness and F. Van Harmelen. OWL Web Ontology Language Overview. W3C World Wide Web Consortium, from http://www.w3.org/TR/2OO3/PR-owl-features-20031215/, 2003.
  31. 31.
    OWL Services Coalition. OWL-S: Semantic Markup for Web Services, OWL-S v. 1.1. White Paper. http://www.daml.org/services/owl-s/1.1/, 2004.
  32. 32.
    M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Importing the Semantic Web in UDDI. In Proceedings of the International Workshop on Web Services, E-Business, and the Semantic Web, LNCS Vol. 2512, pages 225–236, 2002.Google Scholar
  33. 33.
    S. Ran A Model for Web Services Discovery with QoS. ACM SIGecom Exchanges 4:1–10, 2003.CrossRefGoogle Scholar
  34. 34.
    M. Reformat, D.-M. Li, and C. Ly. Approximate reasoning and Semantic Web Services. In Proceedings of the IEEE Annual Meeting of the Fuzzy Information (NAFIPS’04), pages 413–418, 2004.Google Scholar
  35. 35.
    A. Sahai, A. Durante, and V. Machiraju. Towards Automated SLA Management for Web Services. http://www.hpl.hp.com/techreports/2001/HPL-2001-310 R1.pdf, 2001.
  36. 36.
    E. Sirin, B. Parsia, and J. Hendler. Filtering and Selecting Semantic Web Services with Interactive Composition Techniques. IEEE Intelligent Systems, 42–49, 2004.Google Scholar
  37. 37.
  38. 38.
    V. Srinivasan and A. D. Shocker. Linear Programming Techniques for Multidimensional Analysis of Preference. Psychometrika, 38:337–369, 1973.MathSciNetCrossRefGoogle Scholar
  39. 39.
    UDDI. The UDDI Technical White Paper. http://www.uddi.org, 2002.
  40. 40.
    P. Wang, K.-M. Chao, C.-C. Lo, C.-L. Huang, and Y. Li. A Fuzzy Model for Selection of QoS-Aware Web Services. In Proceedings of ICEBE 2006, pages 585–593, 2006.Google Scholar
  41. 41.
    M. Zeleny. Multiple Attributes Decision Making Mcgraw-Hill, 1982.Google Scholar
  42. 42.
    L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality Driven Web Service Composition. In Proceedings of WWW2003, pages 411–421, 2003.Google Scholar
  43. 43.
    L. Zeng, B. Benatallah, A. H. H Ngu, M. Dumas, J. Kalagnanam, and H Chang. Qos-Aware Middleware for Web Service Composition. IEEE Transactions on Software Engineering 30:311–327, 2004.CrossRefGoogle Scholar
  44. 44.
    C. Zhou, L.T. Chin, and B.S. Lee. DAML-QoS Ontology for Web Services. In International Conference on Web Services (ICWS 2004), pages 472–479, 2004.Google Scholar
  45. 45.
    C. Zhou, L.-T. Chia, and B-S Lee. Semantics in Service Discovery and QoS measurement. IT Professional, 7: 29–34, 2005.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Department of MISKun Shan UniversityYung-KangTaiwan
  2. 2.Institute of Information ManagementNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Faculty of Engineering and ComputingCoventry UniversityCoventryUK

Personalised recommendations