Biologically Inspired Motor Control for Underactuated Robots – Trends and Challenges

  • Fumiya Iida
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 396)


If compared with biological systems that routinely exhibit dynamic behaviors in complex environment with surprising adaptivity, energy efficiency and robustness, our robots are still severely suffering from the lack of sensory-motor and learning capabilities [1]. To account for the discrepancy of behavior control in animals and robots, there has been an increasing interest in the study of underactuated robotic systems for rapid, efficient and maneuverable behaviors in the real world.


Stride Length Rough Terrain Passive Joint Legged Locomotion Underactuated System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007)CrossRefGoogle Scholar
  2. 2.
    McGeer, T.: Passive Dynamic Walking. The International Journal of Robotics Research 9(2), 62–82 (1990)CrossRefGoogle Scholar
  3. 3.
    Collins, S.H., Wisse, M., Ruina, A.: A three-dimentional passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research 20, 607–615 (2001)CrossRefGoogle Scholar
  4. 4.
    Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive dynamic walkers. Science 307, 1082–1085 (2005)CrossRefGoogle Scholar
  5. 5.
    Iida, F., Tedrake, R.: Optimization of motor control in underactuated one-legged locomotion. In: International Conference on Robotics and Systems (IROS 2007), pp. 2230–2235 (2007)Google Scholar
  6. 6.
    Iida, F., Rummel, J., Seyfarth, A.: Bipedal walking and running with spring-like biarticular muscles. Journal of Biomechanics 41, 656–667 (2008)CrossRefGoogle Scholar
  7. 7.
    Bovet, S.: Robots with self-developing brains, Dissertation. University of Zurich (2007)Google Scholar
  8. 8.
    Iida, F., Bovet, S.: Learning legged locomotion. In: Adamatzky, A., Komosinski, M. (eds.) Artificial Life Models in Hardware. Springer, Heidelberg (2009) (in press)Google Scholar
  9. 9.
    Rummel, J., Iida, F., Seyfarth, A.: One-legged locomotion with a compliant passive joint. In: Arai, T., et al. (eds.) Intelligent Autonomous Systems, vol. 9, pp. 566–573. IOS Press, Amsterdam (2006)Google Scholar
  10. 10.
    Rummel, J., Seyfarth, A.: Stable running with segmented legs. International Journal of Robotics Research 27(8), 919–934 (2008)CrossRefGoogle Scholar
  11. 11.
    McMahon, T.A.: Muscles reflexes and locomotion. Princeton University Press, Princeton (1984)Google Scholar
  12. 12.
    Alexander, R.M.: Three uses for springs in legged locomotion. International Journal of Robotics Research 9(2), 53–61 (1990)CrossRefGoogle Scholar
  13. 13.
    Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehman, S.: How animals move: An integrative view. Science 288, 100–106 (2000)CrossRefGoogle Scholar
  14. 14.
    Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Phil. Trans. R. Soc. Lond. B 354, 849–861 (1999)CrossRefGoogle Scholar
  15. 15.
    Seyfarth, A., Geyer, H., Guenther, M., Blickhan, R.: A movement criterion for running. Journal of Biomechanics 35, 649–655 (2002)CrossRefGoogle Scholar
  16. 16.
    Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H.: Intelligence by mechanics. Phil. Trans. R. Soc. A 365, 199–220 (2007)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Geyer, H., Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. Proceedings of Royal Society of London B 273, 1471–2954 (2006)CrossRefGoogle Scholar
  18. 18.
    Raibert, H.M.: Legged robots that balance. MIT Press, Cambridge (1986)Google Scholar
  19. 19.
    Ahmadi, M., Buehler, M.: Controlled passive dynamic running experiments with ARL monopod II. IEEE Transactions on Robotics 22(5), 974–986 (2006)CrossRefGoogle Scholar
  20. 20.
    Iida, F., Gomez, G.J., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: Proceedings of International Conference on Advanced Robotics (ICAR 2005), pp. 229–235 (2005)Google Scholar
  21. 21.
    Iida, F., Tedrake, R.: Minimalistic control of a compass gait robot in rough terrain. In: International Conference on Robotics and Automation, ICRA 2009 (2009) (in press)Google Scholar
  22. 22.
    Ziegler, M., Iida, F., Pfeifer, R.: Cheap underwater locomotion: Roles of morphological properties and behavioural diversity. In: Proceedings of Climbing and Walking Robots (2006)Google Scholar
  23. 23.
    Iida, F., Dravid, R., Paul, C.: Design and control of a pendulum driven hopping robot. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002), pp. 2141–2146 (2002)Google Scholar
  24. 24.
    Sutton, R., Barto, A.: Reinforcement learning. MIT Press, Cambridge (2000)Google Scholar
  25. 25.
    Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314, 1118–1121 (2006)CrossRefGoogle Scholar

Copyright information

© Springer London 2009

Authors and Affiliations

  • Fumiya Iida
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations