Advertisement

Firefly Algorithm, Lévy Flights and Global Optimization

  • Xin-She Yang
Conference paper

Abstract

Nature-inspired algorithms such as Particle Swarm Optimization and Firefly Algorithm are among the most powerful algorithms for optimization. In this paper, we intend to formulate a new metaheuristic algorithm by combining Lévy flights with the search strategy via the Firefly Algorithm. Numerical studies and results suggest that the proposed Lévy-flight firefly algorithm is superior to existing metaheuristic algorithms. Finally implications for further research and wider applications will be discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthelemy, P.: Bertolotti J., Wiersma D. S., A Lévy flight for light, Nature, 453, 495-498 (2008).CrossRefGoogle Scholar
  2. 2.
    Baeck, T., Fogel, D. B., Michalewicz, Z.: Handbook of Evolutionary Computation, Taylor & Francis, (1997).Google Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, (1999)Google Scholar
  4. 4.
    Brown, C., Liebovitch, L. S., Glendon, R.: Lévy flights in Dobe Ju/’hoansi foraging patterns, Human Ecol., 35, 129-138 (2007).CrossRefGoogle Scholar
  5. 5.
    Deb, K., Optimisation for Engineering Design, Prentice-Hall, New Delhi, (1995).Google Scholar
  6. 6.
    Gazi, K., and Passino, K. M.: Stability analysis of social foraging swarms, IEEE Trans. Sys. Man. Cyber. Part B - Cybernetics, 34, 539-557 (2004).CrossRefGoogle Scholar
  7. 7.
    Goldberg, D. E.: Genetic Algorithms in Search, Optimisation and Machine Learning, Reading, Mass.: Addison Wesley (1989).Google Scholar
  8. 8.
    Kennedy, J. and Eberhart, R. C.: Particle swarm optimization. Proc. of IEEE International Conference on Neural Networks, Piscataway, NJ. pp. 1942-1948 (1995).Google Scholar
  9. 9.
    Kennedy J., Eberhart R., Shi Y.: Swarm intelligence, Academic Press, (2001).Google Scholar
  10. 10.
    Passino, K. M.: Biomimicrt of Bacterial Foraging for Distributed Optimization, University Press, Princeton, New Jersey (2001).Google Scholar
  11. 11.
    Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing, J. Computational Physics, 226, 1830-1844 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pavlyukevich, I.: Cooling down Lévy flights, J. Phys. A:Math. Theor., 40, 12299-12313 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Reynolds, A. M. and Frye, M. A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search, PLoS One, 2, e354 (2007).CrossRefGoogle Scholar
  14. 14.
    Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S. J.: A general framework for statistical performance comparison of evolutionary computation algorithms, Information Sciences: an Int. Journal, 178, 2870-2879 (2008).Google Scholar
  15. 15.
    Shlesinger, M. F., Zaslavsky, G. M. and Frisch, U. (Eds): Lévy Flights and Related Topics in Phyics, Springer, (1995).Google Scholar
  16. 16.
    Shlesinger, M. F.: Search research, Nature, 443, 281-282 (2006).CrossRefGoogle Scholar
  17. 17.
    Yang, X. S.: Biology-derived algorithms in engineering optimizaton (Chapter 32), in Handbook of Bioinspired Algorithms and Applications (eds Olarius & Zomaya), Chapman & Hall / CRC (2005).Google Scholar
  18. 18.
    Yang, X. S.: Nature-Inspired Metaheuristic Algorithms, Luniver Press, (2008).Google Scholar
  19. 19.
    Yang, X. S.: Engineering Optimization: An Introduction with Metaheuristic Applications, Wiley & Sons, New Jersey, (2010).Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations