Skip to main content

Recent Strategies to Improve Graft Performance in Patients Undergoing Coronary Artery Bypass Surgery. Are Best Results Achieved by Improved Surgical Techniques of Graft Preparation?

  • Chapter
  • First Online:
Advances in Vascular Medicine

Abstract

The patency rate of the saphenous vein (SV) used as a graft in patients undergoing coronary artery bypass surgery (CABG) is poor, with 15-25% grafts occluding within 1 year and over 50% patients requiring further (redo) surgery within 10 years.1 In order to investigate the strategies to reduce vein graft failure in patients undergoing CABG, the underlying pathology of the disease must first be established. The high prevalence of coronary heart disease in Western society has prompted surgeons to develop procedures to improve myocardial blood flow, and subsequently relieve the symptoms of angina pectoris along with other myocardial crises.2 One of the most significant advances in vascular surgery was the finding that venous conduits could be used as replacements for atherosclerotic arteries. Following the work of Alexis Carrel at the turn of the century, a venous graft was first used in 1906 to replace a popliteal aneurysm.2 Promising experimental results encouraged surgeons to apply this method to the coronary vessels. By the 1950s, at the Cleveland Clinic, Favaloro et al. had treated numerous cases of peripheral and renal artery reconstruction with venous conduits and employed this procedure in coronary vessels.3 Research efforts by Favaloro4 led to the development of CABG, a technique which has been used for almost four decades. The great SV of the leg is the conduit of choice for three main reasons. First, it is expendable as deeper vessels maintain blood flow to superficial tissues after its removal. Second, the extensive length of this vein allows for multiple grafts, and finally, its superficial position renders it easily accessible. A 10-year follow-up recatheterization of Favarolo’s first operation showed that both the graft and the bypassed right coronary artery remained patent.3 Such promising results reshaped the history of cardiac surgery and led to the rise of surgical revascularization in the treatment of ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehta D, Izzat MB, Bryan AJ, Angelini GD. Towards the prevention of vein graft failure. Int J Cardiol. 1997;62:S55-S63.

    Article  PubMed  Google Scholar 

  2. Miller DW, ed. The Practice of Coronary Artery Bypass Surg. New York: Plenum Medical Book Company; 1977

    Google Scholar 

  3. Captur G. Memento for Rene Favaloro. Tex Heart Inst J. 2004;31:47-60.

    PubMed  Google Scholar 

  4. Favarolo RG. Saphenous vein graft in the surgical treatment of coronary artery disease: operative technique. J Thorac Cardiovasc Surg. 1969;58:178-185.

    Google Scholar 

  5. Tsui JC, Dashwood MR. Recent strategies to reduce vein graft occlusion: a need to limit the effect of vascular damage. Eur J Vasc Endovasc Surg. 2002;23:202-208.

    Article  CAS  PubMed  Google Scholar 

  6. Roubos N, Rosenfeldt FL, Richards SM, Conyers RAJ, Davis BB. Improved preservation of saphenous vein grafts by the use of glyceryl trinitrate-verapamil solution during harvesting. Circulation. 1995;92:31-36.

    CAS  Google Scholar 

  7. Mitra AK, Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. J Aust Soc Immunol. 2006;84:115-124.

    CAS  Google Scholar 

  8. Kierszenbaum AL, ed. Histology and Cell Biology. Missouri: Mosby; 2002

    Google Scholar 

  9. Martini FH, Ober WC, Garrison CW, Welch K, Hutchings RT, Ireland K, eds. Fundamentals of Anatomy and Physiology. New Jersey: Pearson Education; 2004

    Google Scholar 

  10. Lemson MS, Tordoir JHM, Daemen MJAP, Kitslaar PJEHM. Intimal hyperplasia in vascular grafts. Eur J Var Endovasc Surg. 2000;19:336-350.

    Article  CAS  Google Scholar 

  11. Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition and prevention. Circulation. 1998;97:916-931.

    CAS  PubMed  Google Scholar 

  12. Cox JL, Chiasson DA, Gotlieb AI. Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between vein and arteries. Prog Cardiovasc Dis. 1991;34:45-68.

    Article  CAS  PubMed  Google Scholar 

  13. Rang HP, Dale MM, Ritter JM, Moore PK, eds. Pharmacology. 5th ed. Edinburgh: Churchill Livingstone; 2003

    Google Scholar 

  14. Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost. 2005;3:1800-1814.

    Article  CAS  PubMed  Google Scholar 

  15. Newby AC, Zaltsman AB. Molecular mechanisms in intimal hyperplasia. J Pathol. 2000;190:300-309.

    Article  CAS  PubMed  Google Scholar 

  16. Anstadt MP, Franga DL, Portik-Dobos V, et al. Native matrix metalloproteinase characteristics may influence early stenosis of venous versus arterial coronary artery bypass grafting conduits. Chest. 2004;125:1853-1858.

    Article  CAS  PubMed  Google Scholar 

  17. Schwarz SM, deBlois D, O’Brien ER. The intima. Soil for atherosclerosis and restenosis. Circ Res. 1995;77:445-465.

    Google Scholar 

  18. Gottlob R. The preservation of the venous endothelium by dissection without touching and by an atraumatic technique of vascular anastomosis. Minerva Chir. 1977;32:693-700.

    CAS  PubMed  Google Scholar 

  19. Galea J, Armstrong J, Francis SE, Cooper G, Crossman DC, Holt CM. Alterations in c-fos expression, cell proliferation and apoptosis in pressure distended human saphenous vein. Cardiovasc Res. 1999;44:436-448.

    Article  CAS  PubMed  Google Scholar 

  20. Souza DS, Dashwood MR, Tsui JCS, et al. Improved patency in vein grafts harvested with surrounding tissue: results of a randomised study using three harvesting techniques. Ann Thorac Surg. 2002;73:1189-1195.

    Article  PubMed  Google Scholar 

  21. Souza DS, Johansson B, Bojo L, et al. Harvesting the saphenous vein with surrounding tissue for CABG provides long-term patency comparable to the left internal thoracic artery: results of a randomised longitudinal trial. J Thorac Cardiovasc Surg. 2006;132:373-378.

    Article  PubMed  Google Scholar 

  22. Tsui JCS, Souza DSR, Filbey D, Bomfim V, Dashwood MR. Preserved endothelial integrity and nitric oxide synthase in saphenous vein grafts harvested by a “no-touch” technique. Br J Surg. 2001;88:1209-1215.

    Article  CAS  PubMed  Google Scholar 

  23. Dashwood MR, Anand R, Loesch A, Souza DS. Hypothesis: a potential role for the vasa vasorum in the maintenance of vein graft patency. Angiology. 2004;55:385-395.

    Article  PubMed  Google Scholar 

  24. Gundry SR, Jones M, Ishihara T, Ferran VJ. Optimal preparation techniques for human saphenous vein grafts. Surgery. 1980;88(6):785-794.

    CAS  PubMed  Google Scholar 

  25. Oto T, Griffiths AP, Rosenfeldt F, Levvey BJ, Williams TJ, Snell GI. Early outcomes comparing perfadex, euro-collins, and papworth solutions in lung transplantation. Ann Thorac Surg. 2006;82(5):1842-1848.

    Article  PubMed  Google Scholar 

  26. Moggio RA, Ding J-Z, Smith CJ, Tota RR, Stemerman MB, Reed GE. Immediate-early gene expression in human saphenous veins harvested during coronary artery bypass operation. J Thorac Cardiovasc Surg. 1995;110:209-213.

    Article  CAS  PubMed  Google Scholar 

  27. Cornelissen J, Armstrong J, Holt CM. Mechanical stretch induces phosphorylation of p38-MAPK and apoptosis in human saphenous vein. Arterioscler Thromb Vasc Biol. 2004;24(3):451-456.

    Article  CAS  PubMed  Google Scholar 

  28. Chello M, Mastroroberto P, Frati G, et al. Pressure distension at harvesting upregulates adhesion molecules causes increased neutrophil accumulation and early graft failure. Ann Thorac Surg. 2003;76:453-458.

    Article  PubMed  Google Scholar 

  29. Chung AW, Rauniyar P, Luo H, Hsiang YN, van Breeemen C, Okon EB. Pharmacological preparation of graft using various vasodilators results in increased eNOS expression and NO production after implantation; pharmacology better than distension. J Thorac Cardiovasc Surg. 2006;132:925-932.

    Article  CAS  PubMed  Google Scholar 

  30. Chung AW, Rauniya P, Luo H, Hsiang YN, van Breemen C, Okon EB. Pharmacologic relaxation of vein grafts is beneficial compared with pressure distention caused by upregulation of endothelial nitric oxide synthase and nitric oxide production. J Vasc Surg. 2005;42:747-756.

    Article  PubMed  Google Scholar 

  31. Manabe S, Sunamori M. Radial artery for coronary artery bypass surgery: biological characteristics and clinical outcome. J Cardiothorac Surg. 2006;21:102-114.

    Google Scholar 

  32. Shuhaiber JH, Evans AN, Massad MG, Geha AS. Mechanisms and future directions for prevention of vein graft failure in coronary bypass surgery. Eur J Cardio-Thorac Surg. 2002;22:387-396.

    Article  Google Scholar 

  33. Goldman S, Zadina K, Moritz T, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44:2149-2156.

    Article  PubMed  Google Scholar 

  34. Legare JF, Buth KJ, Sullivan JA, Hirsch GM. Composite arterial grafts versus conventional grafting for coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2004;127:160-166.

    Article  CAS  PubMed  Google Scholar 

  35. Eefting F, Nathoe H, van Dijk D, et al. Randomised comparison between stenting and off-pump bypass surgery in patients referred for angioplasty. Circulation. 2003;108:2870-2876.

    Article  PubMed  Google Scholar 

  36. Gershlick AH. Drug eluting stents in 2005. Heart. 2005;91:24-31.

    Article  Google Scholar 

  37. Mehta D, George SJ, Jeremy JY, et al. External stenting reduces long-term medial and neointimal thickening and platelet derived growth factor expression in a pig model of arteriovenous bypass grafting. Nat Med. 1998;4:235-239.

    Article  CAS  PubMed  Google Scholar 

  38. Vijayan V, Shukla N, Johnson J, et al. Long-term reduction of medial and intimal thickening in porcine saphenous vein grafts with a polyglactin biodegradable external sheath. J Vasc Surg. 2004;40:1011-1019.

    Article  PubMed  Google Scholar 

  39. Jeremy JY, Bulbulia R, Johnson J, et al. A bioabsorbable (polyglactin), non-restrictive, external sheath inhibits porcine saphenous vein graft thickening. J Thorac Cardiovasc Surg. 2004;127:1766-1772.

    Article  PubMed  Google Scholar 

  40. Stooker W, Niessen HWM, Baidoshvili A, et al. Perivenous support reduces early changes in human vein grafts: studies in whole blood perfused human vein segments. J Thorac Cardiovasc Surg. 2001;121:290-297.

    Article  CAS  PubMed  Google Scholar 

  41. Stooker W, Gök M, Sipkema P, et al. Pressure-diameter relationship in the human greater saphenous vein. Ann Thorac Surg. 2003;76:1533-1538.

    Article  PubMed  Google Scholar 

  42. Angelini GD, Bryan AJ, Williams HMJ, Morgan R, Newby AC. Distension promotes platelet and leukocyte adhesion and reduces short-term patency in pig arterio-venous bypass grafts. J Thorac Cardiovasc Surg. 1990;99:433-439.

    CAS  PubMed  Google Scholar 

  43. Angelini GD, Bryan AJ, Williams HMJ, et al. Time-course of medial and intimal thickening in pig venous arterial grafts: Relationship to endothelial injury and cholesterol accumulation. J Thorac Cardiovasc Surg. 1992;103:1093-1103.

    CAS  PubMed  Google Scholar 

  44. The Post Coronary Artery Bypass Graft Trial Investigators. The effect of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation on obstructive changes in saphenous-vein coronary-artery bypass grafts. N Engl J Med. 1997;336:153-162

    Google Scholar 

  45. Goldman S, et al. Saphenous vein graft patency 1 year after coronary artery bypass surgery and effects of antiplatelet therapy. Results of a Veterans Administration Cooperative Study. Circulation. 1989;80:1190-1197.

    CAS  PubMed  Google Scholar 

  46. Stein PD, et al. Antithrombotic therapy in patients with saphenous vein and internal mammary artery bypass grafts. Chest. 1995;108:424S-430S.

    Article  CAS  PubMed  Google Scholar 

  47. Becquemin JP. Effect of ticlopidine on the long-term patency of saphenous-vein bypass grafts in the legs. Etude de la Ticlopidine apres Pontage Femoro-Poplite and the Association Universitaire de Recherche en Chirurgie. N Engl J Med. 1997;337:1726-1731.

    Article  CAS  PubMed  Google Scholar 

  48. Watson HR, Belcher G, Horrocks M. Adjuvant medical therapy in peripheral bypass surgery. Br J Surg. 1999;86:981-991.

    Article  CAS  PubMed  Google Scholar 

  49. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy II: Maintenance of vascular graft or arterial patency by antiplatelet therapy. BMJ. 1994;308:159-168.

    Google Scholar 

  50. Sogo N, Campanella C, Webb DJ, Megson IL. S-nitrosothiols cause prolonged, nitric oxide-mediated relaxation in human saphenous vein and internal mammary artery: therapeutic potential in bypass surgery. Br J Pharmacol. 2000;131:1236-1244.

    Article  CAS  PubMed  Google Scholar 

  51. Salas E, et al. S-nitrosoglutathione inhibits platelet activation and deposition in coronary artery saphenous vein grafts in vitro and in vivo. Heart. 1998;80:146-150.

    CAS  PubMed  Google Scholar 

  52. George SJ, Johnson JL, Angelini GD, Jeremy JY. Short-term exposure to thapsigargin inhibits neointima formation in human saphenous vein. Arterioscler Thromb Vasc Biol. 1997;17:2500-2506.

    CAS  PubMed  Google Scholar 

  53. Burke SE, et al. Neointimal formation after balloon-induced vascular injury in Yucatan minipigs is reduced by oral rapamycin. J Cardiovasc Pharmacol. 1999;33:829-835.

    Article  CAS  PubMed  Google Scholar 

  54. Jeremy JY, Dashwood MR. Microvascular repair. In: Shepro AM, ed. Encyclopaedia of the Microvasculature. New York: Elsevier; 2006:903-911.

    Google Scholar 

  55. Dashwood M, Anand R, Loesch A, Souza D. Surgical trauma and vein graft failure: further evidence for a role of et-1 in graft occlusion. J Cardiovasc Pharmacol. 2004;44:S16-S19.

    Article  CAS  PubMed  Google Scholar 

  56. Dashwood MR, Barker SG, Muddle JR, Yacoub MH, Martin JF. [125I]-Endothelin-1 binding to vasa vasorum and regions of neovascularization in human and porcine blood vessels: a possible role for endothelin in intimal hyperplasia and atherosclerosis. J Cardiovasc Pharmacol. 1993;22(suppl 8):S343-S347.

    Article  CAS  PubMed  Google Scholar 

  57. Dashwood MR, Sykes RM, Muddle JR, et al. Autoradiographic localization of [125I] endothelin binding sites in human blood vessels and coronary tissue: functional correlates. J Cardiovasc Pharmacol. 1991;17(suppl 7):S458-S462.

    Article  CAS  PubMed  Google Scholar 

  58. Wan S, Yim AP, Johnson JL, et al. The endothelin 1A receptor antagonist BSF 302146 is a potent inhibitor of neointimal and medial thickening in porcine saphenous vein-carotid artery interposition grafts. J Thorac Cardiovasc Surg. 2004;127(5):1317-1322.

    Article  CAS  PubMed  Google Scholar 

  59. Zorina SG, Kharti JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circulation. 2002;90:251-262.

    Google Scholar 

  60. Shi Y, Patel S, Niculescu R, Chung W, Desrochers P, Zalewski A. Role of matrix metaloproteinases and their tissue inhibitors in the regulation of coronary cell migration. Arterioscler Thromb Vasc Biol. 1999;19:1150-1155.

    CAS  PubMed  Google Scholar 

  61. Porter KE, Thompson MM, Loftus IM, et al. Production and inhibition of the gelatinolytic matrix metalloproteinases in a human model of graft stenosis. Eur J Vasc Endovasc Surg. 1999;17:404-412.

    Article  CAS  PubMed  Google Scholar 

  62. Baker AH, Yim APC, Wan S. Opportunities for gene therapy in preventing vein graft failure after coronary artery bypass surgery. Diabetes Obes Metab. 2005;8(2):119-124.

    Article  Google Scholar 

  63. Lozier JN, Metzger ME, Donahue RE, Morgan RA. Adenovirus-mediated expression of human coagulation factor ix in the rhesus macaque is associated with dose-limiting toxicity. Blood. 1999;94(12):3968-3975.

    CAS  PubMed  Google Scholar 

  64. George SJ, Channon KM, Baker AH. Gene therapy and coronary artery bypass grafting: current perspectives. Curr Opinion Mol Ther. 2006;8:288-294.

    CAS  Google Scholar 

  65. Chen AF, Ren J, Miao CY. Nitric oxide gene therapy for cardiovascular disease. Jpn J Pharmacol. 2002;89:327-336.

    Article  CAS  PubMed  Google Scholar 

  66. West NEJ, Qian HS, Guzik TJ, et al. Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft remodeling: effects on vascular smooth muscle cell differentiation and superoxide production. Circulation. 2001;104:1526-1532.

    Article  CAS  PubMed  Google Scholar 

  67. Cable DG, O’Brien T, Schaff HV, Pompili VJ. Recombinant endothelial nitric oxide synthase-transduced human saphenous veins: gene therapy to augment nitric oxide production in bypass conduits. Circulation. 1997;96(9 suppl)):II-173-II-178.

    Google Scholar 

  68. Von der Leyen H, Dzau VJ. Therapeutic potential of nitric oxide synthase gene manipulation. Circulation. 2001;103:2760-2765.

    PubMed  Google Scholar 

  69. Kalra M, Jost CJ, Secerson SR, Miller VM. Adventitial versus intimal liposome-mediated ex vivo transfection of canine saphenous vein grafts with endothelial nitric oxide synthase gene. J Vasc Surg. 2000;32:1190-2000.

    Article  CAS  PubMed  Google Scholar 

  70. Dattilo JB, Dattilo MP, Spratt JA, Matsuura J, Yager DR, Makhoul RG. Inducible nitric oxide synthase expression in human vein grafts. Am J Surg. 1997;174:177-180.

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez-Alfonso MS. Regulation of vascular tone: the fat connection. Hypertension. 2004;44:255-256.

    Article  CAS  PubMed  Google Scholar 

  72. Dashwood MR, Dooley A, Shi-Wen X, Abraham DJ, Souza DSR. Does periadventitial fat-derived nitric oxide play a role in improved saphenous vein graft patency in patients undergoing coronary artery bypass surgery? J Vasc Res. 2007;44:175-181.

    Article  CAS  PubMed  Google Scholar 

  73. Gao YJ, Zeng ZH, Teoh K, et al. Perivascular adipose tissue modulates vascular function in the internal thoracic artery. J Thorac Cardiovasc Surg. 2005;130:1130-1136.

    Article  PubMed  Google Scholar 

  74. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater. 2004;74B:570-581.

    Google Scholar 

  75. Vara DS, Salacinski HJ, Kannan RY, Bordenave L, Hamilton G, Seifalian AM. Cardiovascular tissue engineering: state of the art. Pathol Biol. 2005;53:599-612.

    Article  PubMed  Google Scholar 

  76. Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E. Synthetic vascular prosthesis impregnated with mesenchymal stem cells overexpressing endothelial nitric oxide synthase. Circulation. 2006;114:327-330.

    Google Scholar 

  77. Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimus and paclitaxel-eluting coronary stents. N Engl J Med. 2007;356:998-1008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Dashwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Baron, R., Dashwood, M.R., Arbeus, M., Filbey, D., Souza, D.S.R. (2009). Recent Strategies to Improve Graft Performance in Patients Undergoing Coronary Artery Bypass Surgery. Are Best Results Achieved by Improved Surgical Techniques of Graft Preparation?. In: Abraham, D., Clive, H., Dashwood, M., Coghlan, G. (eds) Advances in Vascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84882-637-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-637-3_21

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-636-6

  • Online ISBN: 978-1-84882-637-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics