Advertisement

Sensorized Garment Augmented 3D Pervasive Virtual Reality System

  • Tauseef GulrezEmail author
  • Alessandro Tognetti
  • Danilo De Rossi
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

Keywords

Virtual reality Wearable sensor-shirt Navigation Pervasive computing Body movements 

References

  1. 1.
    E. Beltrami. Sulle funzioni bilineari. Giornale di Mathematiche di Battaglini, 11:98–106, 1873.Google Scholar
  2. 2.
    I. Carreras, I. Chlamtac, F. De Pellegrini, and D. Miorandi. Bionets: Bio-inspired networking for pervasive communication environments. IEEE Transactions on Vehicular Technology, 56(1):218–229, 2007.CrossRefGoogle Scholar
  3. 3.
    Coin 3D Graphics Development Library, www.coin3d.org/lib/downloads
  4. 4.
    Disability and rehabilitation (dar) team – assistive devices/technologies. www.who.int/disabilities/technology/en/index.html, World Health Organisation. 2007.
  5. 5.
    Disability and rehabilitation who action plan 2006–2011. www.who.int/disabilities/, World Health Organisation, 2007.
  6. 6.
    M. Dollarhide. Pervasive computing helps fans get into the game. IEEE Pervasive Computing, 6(3):7–10, 2007.CrossRefGoogle Scholar
  7. 7.
    Electrically conductive liquid silicone rubber, Elastocil LR 3162, www.wacker.com/cms/en/products-markets/products/product.jsp?product=9091
  8. 8.
    I.A. Essa. Ubiquitous sensing for smart and aware environments. IEEE Personal Communications, 7(5):47–49, 2000.CrossRefGoogle Scholar
  9. 9.
    E. Farella, D. Brunelli, L. Benini, B. Ricco, and M.E. Bonfigli. Pervasive computing for interactive virtual heritage. IEEE Multimedia, 12(3):46–58, 2005.CrossRefGoogle Scholar
  10. 10.
    R.A. Fisher and W.A. Mckenzie. Studies in crop variation ii. the manurial response of different potato varieties. Journal of Agricultural Science, 13:311–320, 1923.CrossRefGoogle Scholar
  11. 11.
    T. Gulrez and S. Challa. Relevant opportunistic information extraction and scheduling in heterogeneous sensor networks. In 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (ICAMP 2005), Mexico City, 2005.Google Scholar
  12. 12.
    T. Gulrez and M. Kavakli. Precision position tracking in virtual reality environments using sensor networks. In IEEE International Symposium on Industrial Electronics, Vigo, 2007.Google Scholar
  13. 13.
    T. Gulrez and M. Kavakli. Sensor relevance establishment problem in shared information gathering sensor networks. In IEEE International Conference on Networking Sensing and Control (ICNSC’07), London, 2007.Google Scholar
  14. 14.
    T. Gulrez, M. Kavakli, and A. Tognetti. Robotics and virtual reality: A marriage of two diverse streams of science. In Computational Intelligence in Multimedia Processing: Recent Advances, 99–118. Springer, Heidelberg, 2008.Google Scholar
  15. 15.
    T. Gulrez, A. Tognetti, A. Fishbach, S. Acosta, C. Scharver, D. DeRossi, and F.A. Mussa-Ivaldi. Controlling wheelchairs by body motions: A learning framework for the adaptive remapping of space. In Proceedings of the International Conference on Cognitive Systems (CogSys 2008), Karlsruhe, 2008.Google Scholar
  16. 16.
    J. Hey and S. Carter. Pervasive computing in sports training. IEEE Pervasive Computing, 4(3):54, 2005.CrossRefGoogle Scholar
  17. 17.
    H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417–444, 498–520, 1933.Google Scholar
  18. 18.
    K. Jegers and M. Wiberg. Pervasive gaming in the everyday world. IEEE Pervasive Computing, 5(1):78–85, 2006.CrossRefGoogle Scholar
  19. 19.
    A. Johnson, D. Sandin, G. Dawe, Z. Qiu, and D. Plepys. Developing the paris: Using the cave to prototype a new vr display. In Proceedings of IPT 2000, Ames, Iowa, June 2000.Google Scholar
  20. 20.
    M.C. Jordan. Memoire sur les formes bilineaires. Journal of Pure and Applied Mathematics, 19:35–54, 1874.Google Scholar
  21. 21.
    H.I. Krebs, M. Ferraro, S.P. Buerger, M.J. Newbery, A. Makiyama, M. Sandmann, D. Lynch, B.T. Volpe, and N. Hogan. Rehabilitation robotics: Pilot trial of a spatial extension for mit-manus. Journal of NeuroEngineering and Rehabilitation, 1(5), 2004.Google Scholar
  22. 22.
    F. Lorussi. Analysis and synthesis of human movement: Wearable kinesthetic interfaces. PhD thesis, DSEA, University of Pisa, 2003.Google Scholar
  23. 23.
    F. Lorussi, W. Rocchia, E. P Scilingo, A. Tognetti, and D. De Rossi. Wearable redundant fabric-based sensors arrays for reconstruction of body segment posture. IEEE Sensors Journal, 4(6):807–818, 2004.CrossRefGoogle Scholar
  24. 24.
    F. Lorussi, E.P. Scilingo, M. Tesconi, A. Tognetti, and D. De Rossi. Strain sensing fabric for hand posture and gesture monitoring. IEEE Transactions On Information Technology In Biomedicine, 9(3):372–381, September 2005.CrossRefGoogle Scholar
  25. 25.
    D. Marculescu, R. Marculescu, N.H. Zamora, P. Stanley-Marbell, P.K. Khosla, S. Park, S. Jayaraman, S. Jung, C. Lauterbach, W. Weber, T. Kirstein, D. Cottet, J. Grzyb, G. Troster, M. Jones, T. Martin, and Z. Nakad. Electronic textiles: A platform for pervasive computing. Proceedings of the IEEE, 91(12):1995–2018, 2003.CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Matlab simulink. www.mathworks.com
  28. 28.
    F.A. Mussa-Ivaldi, A. Fishbach, T. Gulrez, A. Tognetti, and D. De-Rossi. Remapping the residual motor space of spinal-cord injured patients for the control of assistive devices. In Neuroscience 2006, Atlanta, Georgia, 14–18, 2006.Google Scholar
  29. 29.
    F.A. Mussa-Ivaldi and L.E. Miller. Brain machine interfaces: Computational demands and clinical needs meet basic neuroscience. Review, Trends in Neuroscience, 26:329–334, 2003.CrossRefGoogle Scholar
  30. 30.
    National Instruments, Multi-function Data Acquisition, www.ni.com/dataacquisition/
  31. 31.
    K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, (6)2:559–572, 1901.Google Scholar
  32. 32.
    E.R. Post, M. Orth, P.R. Russo, and N. Gershenfeld. Design and fabrication of textile-based computing. IBM System Journal, 39(3–4), 2000.Google Scholar
  33. 33.
    R.W. Stevens. TCP/IP Illustrated. Addison-Wesley, ISBN 0201633469, 1994.Google Scholar
  34. 34.
    S. Takezawa, T. Gulrez, D. Herath, and G. Dissanayke. Environmental recognition for autonomous robot using slam real time path planning with dynamical localised voronoi division. Transactions of the Japan Society of Mechanical Engineers (JSME), 3:904–910, 2005.Google Scholar
  35. 35.
    S. Teller, Jiawen Chen, and H. Balakrishnan. Pervasive pose-aware applications and infrastructure. IEEE Computer Graphics and Applications, 23(4):14–18, 2003.Google Scholar
  36. 36.
    A. Tognetti, F. Lorussi, R. Bartalesi, S. Quaglini, M. Tesconi, G. Zupone, and D. De Rossi. Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2(8), 2005.Google Scholar
  37. 37.
    CAVELib\({}^{{}^{\mbox{ TM}} }\) for interactive 3D environments, www.mechdyne.com/integratedSolutions/software/products/CAVELib/CAVELib.htm
  38. 38.
    World report on disability and rehabilitation. Concept Paper, www.who.int/disabilities/, World Health Organisation, 2007.

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Tauseef Gulrez
    • 1
    • 2
    Email author
  • Alessandro Tognetti
    • 1
  • Danilo De Rossi
    • 1
  1. 1.Vitrual Interactive Simulations of Reality Labs, Department of ComputingMacquarie UniversitySydneyAustralia
  2. 2.Department of Computer Engineering, College of Engineering and Applied SciencesAl-Ghurair UniversityDubai Academic CityUnited Arab Emirates

Personalised recommendations