Simulating the Human Motion Under Functional Electrical Stimulation Using the HuMAnS Toolbox

  • Martine Eckert
  • Mitsuhiro Hayashibe
  • David Guiraud
  • Pierre-brice Wieber
  • Philippe Fraisse
Chapter

Abstract

Mathematical models of the skeletal muscle can support the development of neuroprostheses to restore functional movements in individuals with motor deficiencies by means of XE “Functional electrical stimulation (XE “FES”). Since many years, numerous skeletal muscle models have been proposed to express the relationship between muscle activation and generated force. One of them (Makssoud et al.), integrates the Hill model and the physiological one based on Huxley work allowing the muscle activation under FES. We propose in this chapter an improvement of this model by modifying the activation part. These improvements are highlighted through the HuMAnS (Humanoid Motion Analysis and Simulation) toolbox using a 3D biomechanical model of human named Human 36. This chapter describes this toolbox and the software implementation of the model. Then, we present the results of the simulation.

References

  1. 1.
    El Makssoud H (2005) Modélisation et Identification des Muscles Squelettiques sous Stimulation Electrique Fonctionnelle. PhD Thesis, Université Montpellier 2Google Scholar
  2. 2.
    El Makssoud H, Guiraud D, Poignet P (2004) Mathematical muscle model for functional electrical stimulation control strategies. In: Proceedings of the International Conference on Robotics and Automation (ICRA), pp. 1282–1287Google Scholar
  3. 3.
    Hill AV (1938) The heat of shortening and the dynamic constants in muscle. Proceeding of the Royal Society, London, Series B 126:136–195CrossRefGoogle Scholar
  4. 4.
    Huxley AF (1957) Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry 7:255–318Google Scholar
  5. 5.
    Wieber PB, Billet F, Boissieux L, Pissard-Gibollet R (2006) The HuMAnS toolbox, a homogeneous framework for motion capture, analysis and simulation. In: Ninth International Symposium on the 3D Analysis of Human MovementGoogle Scholar
  6. 6.
    Delp SL, Loan JP (1995) A graphics-based software system to develop and analyze models of musculoskeletal structures. Computers in Biology and Medicine 25:21–34CrossRefGoogle Scholar
  7. 7.
    Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: Open-source software to create and analyse dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54(11):1940–1950CrossRefGoogle Scholar
  8. 8.
    Nakamura Y, Yamane K, Fujita Y, Suzuki I (2005) Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. IEEE Transactions on Robotics 21(1):58–66CrossRefGoogle Scholar
  9. 9.
    Zajac FE (1989) Muscle and tendon: Properties, models, scaling and application to biomechanics and motor control. CRC Critical Reviews in Biomedical Engineering 17:359–411Google Scholar
  10. 10.
    Wieber PB (2000) Modélisation et commande d’un robot marcheur anthropomorphe. PhD Thesis, Ecole des mines de ParisGoogle Scholar
  11. 11.
    Bottecchia S (2006) Estimation de posture : vers la prise en compte de la 3° dimension sur le modèle biomécanique. Rapport de stage de Master II Recherche, Lirmm, MontpellierGoogle Scholar
  12. 12.
    Hayashibe M, Poignet P, Guiraud D, Makssoud H (2008) Nonlinear identification of skeletal muscle dynamics with sigma-point Kalman filter for model-based FES. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2049–2054Google Scholar

Copyright information

© Springer-Verlag London 2009

Authors and Affiliations

  • Martine Eckert
    • 1
  • Mitsuhiro Hayashibe
    • 2
  • David Guiraud
    • 2
  • Pierre-brice Wieber
    • 3
  • Philippe Fraisse
    • 2
  1. 1.IMERIRPerpignanFrance
  2. 2.DEMAR Project, INRIA – LIRMMMontpellierFrance
  3. 3.BIPOP Project, INRIAGrenobleFrance

Personalised recommendations