Advertisement

The Phi-Bot: A Robot Controlled by a Slime Mould

  • Soichiro Tsuda
  • Stefan Artmann
  • Klaus-Peter Zauner

Information processing in natural systems radically differs from current information technology. This difference is particularly apparent in the area of robotics, where both the organisms and artificial devices face a similar challenge: the need to act in real time in a complex environment and to do so with computing resources severely limited by their size and power consumption. Biological systems evolved enviable computing capabilities to cope with noisy and harsh environments and to compete with rivalling life forms. Information processing in biological systems, from single-cell organisms to brains, directly utilises the physical and chemical processes of cellular and intracellular dynamics, whereas that in artificial systems is, in principle, independent of any physical implementation. The formidable gap between artificial and natural systems in terms of information processing capability [1] motivates research into biological modes of information processing. Hybrid artifacts, for example, try to overcome the theoretic and physical limits of information processing in solid-state realisations of digital von Neumann machines by exploiting the self-organisation of naturally evolved systems in engineered environments [2, 3].

This chapter presents a particular unconventional computing system, the Φ-bot, whose control is based on the behaviour of the true slime mould Physarum polycephalum. The second section gives a short introduction to the information-processing capabilities of this organism. The third section describes the two generations of the Φ-bot built so far. To discuss information-theoretic aspects of this robot, it is useful to sketch the concept of bounded computability that relates generic traits of information-processing systems with specific physico-chemical constraints on the realisation of such systems in different classes of computational media. This is done in the fourth section. The concluding section gives an outlook on engineering as well as foundational issues that will be important for the future development of the Φ-bot.

Keywords

Autonomous Robot Physarum Polycephalum Syntactic Representation Organic Code Computational Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conrad, M.: The importance of molecular hierarchy in information preocessing. In: C.H. Waddington (ed.) Towards a theoreritcal biology, vol. 4, pp. 222–228. Edinburgh University Press, Edinburgh (1972)Google Scholar
  2. 2.
    Adamatzky, A., Costello, B., Asai, T.: Reaction-diffusion computers. Elsevier Science, New York, NY, USA (2005)Google Scholar
  3. 3.
    Zauner, K.P.: Molecular information technology. Critical Reviews in Solid State and Material Sciences 30(1), 33–69 (2005)CrossRefGoogle Scholar
  4. 4.
    Wohlfarth-Bottermann, K.E.: Oscillatory contraction activity in physarum. The Journal of Experimental Biology 81, 15–32 (1979)Google Scholar
  5. 5.
    Hejnowicz, Z., Wohlfarth-Bottermann, K.E.: Propagated waves induced by gradients of physiological factors within plasmodia of Physarum polycephalum. Planta 150, 144–152 (1980)CrossRefGoogle Scholar
  6. 6.
    Matsumoto, K., Ueda, T., Kobatake, Y.: Propagation of phase wave in relation to tactic responses by the plasmodium of Physarum polycephalum. Journal of Theoretical Biology 122, 339–345 (1986)CrossRefGoogle Scholar
  7. 7.
    Tanaka, H., Yoshimura, H., Miyake, Y., Imaizumi, J., Nagayama, K., Shimizu, H.: Information processing of Physarum polycephalum studied by micro-thermography. Protoplasma 138, 98–104 (1987)CrossRefGoogle Scholar
  8. 8.
    Matsumoto, K., Ueda, T., Kobatake, Y.: Reversal of thermotaxis with oscillatory stimulation in the plasmodium of Physarum polycephalum. Journal of Theoretical Biology 131, 175–182 (1988)CrossRefGoogle Scholar
  9. 9.
    Miura, H., Yano, M.: A model of organization of size invariant positional information in taxis of Physarum plasmodium. Progress of Theoretical Physics 100(2), 235–251 (1998)CrossRefGoogle Scholar
  10. 10.
    Miyake, Y., Tabata, S., Murakami, H., Yano, M., Shimizu, H.: Environmental-dependent self-organization of positional information field in chemotaxis of Physarum plasmodium. Journal of Theoretical Biology 178, 341–353 (1996)CrossRefGoogle Scholar
  11. 11.
    Gierer, A., Meinhardt, H.: Theory of biological pattern formation. Kybernetik 12, 30– 39 (1972)CrossRefGoogle Scholar
  12. 12.
    Takamatsu, A., Fujii, T.: Construction of a living coupled oscillator system of plasmodial slime mold by a microfabricated structure. Sensors Update 10(1), 33–46 (2002)CrossRefGoogle Scholar
  13. 13.
    Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., Endo, I.: Spatiotemporal symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold. Physical Reviews Letters 87(7), 078102 (2001)CrossRefGoogle Scholar
  14. 14.
    Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proceedings of the Royal Society: Biological Sciences 271(1554), 2305–2310 (2004)CrossRefGoogle Scholar
  16. 16.
    Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Physical Review Letters 100(1), 018101 (2008)CrossRefGoogle Scholar
  17. 17.
    Nakagaki, T., Uemura, S., Kakiuchi, Y., Ueda, T.: Action spectrum for sporulation and photoavoidance in the plasmodium of Physarum polycephalum, as modified differentially by temperature and starvation. Photochemistry and Photobiology 64(5), 859–862 (1996)CrossRefGoogle Scholar
  18. 18.
    Wohlfarth-Botterman, K.E.: Oscillating contractions in protoplasmic strands of physarum: Simultaneous tensiometry of logitudinal and radial rhythms, periodicity analysis and temperature dependence. Journal of Experimental Biology 67, 49–59 (1977)Google Scholar
  19. 19.
    Macey, P.: Impedance spectroscopy based interfacing with a living cell for biosensors and bio-coporcessors. Part III Project Report, School of Electronics and Computer Science, University of Southampton (2007)Google Scholar
  20. 20.
    Jones, G.: Robotic platform for molecular controlled robots. Part III Project Report, School of Electronics and Computer Science, University of Southampton (2006)Google Scholar
  21. 21.
    Takamatsu, A., Fujii, T., Endo, I.: Control of interaction strength in a network of the true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)CrossRefGoogle Scholar
  22. 22.
    Takamatsu, A., Fujii, T., Yokota, H., Hosokawa, K., Higuchi, T., Endo, I.: Controlling the geometry and the coupling strength of the oscillator system in plasmodium of Physarum poly-cephalum by microfabricated structure. Protoplasma 210, 164–171 (2000)CrossRefGoogle Scholar
  23. 23.
    Coster, H.G.L., Chilcott, T.C., Coster, C.F.: Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochemistry and Bioenergetics 40, 79–98 (1996)CrossRefGoogle Scholar
  24. 24.
    Braitenberg, V.: Vehicles: Experiments in synthetic psychology. MIT, Cambridge, MA (1984)Google Scholar
  25. 25.
    Shannon, C., Weaver, W.: Mathematical theory of communication. University of Illinois Press, Illinois (1949)zbMATHGoogle Scholar
  26. 26.
    Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading, MA (1994)zbMATHGoogle Scholar
  27. 27.
    Simon, H.: Models of Bounded Rationality, 3 vols. MIT, Cambridge, MA (1982/1997)Google Scholar
  28. 28.
    Tsuda, S., Zauner, K.P., Gunji, Y.P.: Computing substrates and life. In: S. Artmann, P. Dittrich (eds.) Explorations in the Complexity of Possible Life: Abstracting and Synthesizing the Principles of Living Systems, Proceedings of the 7th German Workshop on Artificial Life, pp. 39–49. IOS, Jena, Germany (2006)Google Scholar
  29. 29.
    Artmann, S.: Biological information. In: S. Sarkar, A. Plutynski (eds.) A companion to the philosophy of biology, pp. 22–39. Blackwell, Malden, MA (2008)Google Scholar
  30. 30.
    Morris, C.: Writings on the general theory of signs. Mouton, Den Haag and Paris (1971)Google Scholar
  31. 31.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 3rd edn. Addison-Wesley, Reading, MA (2007)Google Scholar
  32. 32.
    Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley, New York (2006)zbMATHGoogle Scholar
  33. 33.
    Barbieri, M.: Organic Codes: An introduction to semantic biology. Cambridge University Press, Cambridge (2003)Google Scholar
  34. 34.
    Artmann, S.: Basic semiosis as code-based control. Biosemiotics 2, 31–38 (2009)CrossRefGoogle Scholar
  35. 35.
    MacKay, D.: Information, mechanism and meaning. MIT, Cambridge, MA (1969)Google Scholar
  36. 36.
    Lewis, D.: Convention: a philosophical study, 1st edn. Harvard University Press, Princeton, New Jersey (1968)Google Scholar
  37. 37.
    Aono, M., Hara, M.: Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: 6th International Conference, UC 2007, LNCS, vol. 4618, pp. 41–54. Springer, Kingston, Canada (2007)Google Scholar
  38. 38.
    Nomura, S.: Symbolization of an object and its freedom in biological systems. Ph.D. thesis, Kobe University (2001)Google Scholar
  39. 39.
    Takamatsu, A., Yamamoto, T., Fujii, T.: Spontaneous switching of frequency-locking by periodic stimulus in oscillators of plasmodium of the true slime mold. BioSystems 76, 133–140 (2004)CrossRefGoogle Scholar
  40. 40.
    Revilla, F., Zauner, K.P., Morgan, H.: Physarum polycephalum on a chip. In: J.L. Viovy, P. Tabeling, S. Descroix, L. Malaquin (eds.) The proceedings of μTAS 2007, vol. 2, pp. 1089–1091 (2007)Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Soichiro Tsuda
    • 1
  • Stefan Artmann
    • 2
  • Klaus-Peter Zauner
    • 1
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonUK
  2. 2.Frege Centre for Structural SciencesFriedrich-Schiller-UniversityJenaGermany

Personalised recommendations