Biohydrogen pp 163-219 | Cite as


Part of the Green Energy and Technology book series (GREEN)


Hydrogen is the element of greatest abundance in the universe; however, its production from renewable resources remains a major challenge. Biohydrogen produced from biorenewables is a promising alternative for a sustainable energy source. Biohydrogen is a renewable biofuel produced from biorenewable feedstocks by chemical, thermochemical, biological, biochemical, and biophotolytical methods. As a sustainable energy supply with minimal or zero use of hydrocarbons, hydrogen is a promising alternative to fossil fuel. It is a clean and environmentally friendly fuel, which produces water instead of greenhouse gases when combusted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.W.W. 1990. The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145.Google Scholar
  2. Aiba, S., Humphrey, A.E., Milis, N.F. 1973. Biochemical engineering, 2nd edn. Academic, New York.Google Scholar
  3. Akkerman, I., Janssen, M., Rocha, J., Wijffels, R.H. 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208.Google Scholar
  4. Aoyama, K., Uemura, I., Miyake, J., Asada, Y. 1987. Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium Spirulina platensis. J Ferment Bioeng 83:17–20.Google Scholar
  5. Antal, M.J. 1978. Tower power: producing fuels from solar energy, in Toward a solar civilization, R.H. Williams (Ed.) MIT Press, Cambridge, MA.Google Scholar
  6. Antal, M.J., Feber, R.C., Tinkle, M.C. 1974. Proceedings 1st World Hydrogen Energy Conference, Miami Beach, FL.Google Scholar
  7. Antal, M.J., Allen, S., Schulman, D., Xu, X., Divilio, R. 2000. Biomass gasification in supercritical water. Ind Chem Eng Res 39:4040–4053.Google Scholar
  8. Antal, T.K., Lindblad, P. 2005. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120.Google Scholar
  9. Backman, R., Fredrick, W.J., Hupa, M. 1993. Basic studies on black-liquor pyrolysis and char gasification. Biores Technol 46:153–158.Google Scholar
  10. Benemann, J.R. 1996. Hydrogen biotechnology: progress and prospects. Nature Biotechnol 14:1101–1103.Google Scholar
  11. Benemann, J.R. 1997. Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy 22:979–987.Google Scholar
  12. Benemann, J.R. 1998. The technology of biohydrogen. Plenum, New York.Google Scholar
  13. Benemann, J.R., Weare, N.M. 1974. Hydrogen evolution by nitrogen-fixing. Anabaena cylindrica cultures. Science 184:174–175.Google Scholar
  14. Byrd, A.J., Pant, K.K., Gupta, R.B. 2007. Hydrogen production from glucose using Ru/Al2 O3 catalyst in supercritical water. Ind Eng Chem Res 46:3574–3579.Google Scholar
  15. Caglar, A., Demirbas, A. 2002a. Hydrogen-rich gas mixture from olive husk via pyrolysis. Energy Convers Manage 43:109–117.Google Scholar
  16. Caglar, A., Demirbas, A. 2002b. Conversion cotton cocoon shell to hydrogen-rich gaseous products by pyrolysis. Energy Convers Manage 43:489–497.Google Scholar
  17. Cetin, B., Yurdakulol, E. 1985. Gerede-Aktas (Bolu) ormanlarinin karayosunlari (Musci) florasi. Doga Bilim Der 9:29–38 (in Turkish).Google Scholar
  18. Cetin, B., Yurdakulol, E. 1988. Yedigoller milli parkinin karayosunu florasi. Turkish J Bot 12:128–146 (in Turkish).Google Scholar
  19. Chen, G., Spliethoff, H., Yang, L.B., Andries, J. 2003. Hydrogen production from gasification: pyrolysis of biomass. III. International Slovak Biomass Forum, Bratislava, Slovakia, 3–4 Feb 2003.Google Scholar
  20. Chornet, E. 2001. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming. Proceedings of the 2001 USA. DOE Hydrogen Program Review (NREL/CP 570-30535).Google Scholar
  21. Claassen, P.A.M., Lier, J.B.V., Lopez, C.A.M., Niel, E.W.J., Sijitsma, L., Stams, A.J.M., Vriess, S.S.D., Weusthusis, R.A. 1999. Utilization of biomass for the supply of energy carries. Appl Microbiol Biotechnol 52:741–755.Google Scholar
  22. Cortright, R.D., Davda, R.R., Dumesic, J.A. 2002. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967.Google Scholar
  23. Cox, J.L., Tonkovich, A.Y., Elliott, D.C., Baker, E.G., Hoffman, E.J. 1995. Hydrogen from biomass: a fresh approach. Proceedings of the 2nd Biomass Conference of the Americas (NREL/CP-200-8098; CONF-9508104) August 1995, Portland, Oregon.Google Scholar
  24. Czernik, S., French, R., Feik, C., Chornet, E. 2001. Production of hydrogen from biomass derived liquids. Proceedings of the 2001 USA. DOE Hydrogen Program Review (NREL/CP 570-30535).Google Scholar
  25. Das, D., Veziroglu, T.N. 2008. Advances in biological hydrogen production processes. Int J Hydrogen Energy 33:6046–6057.Google Scholar
  26. Demirbas, A. 1998. Yields of oil products from thermochemical biomass conversion processes. Energy Convers Manage 39:685–690.Google Scholar
  27. Demirbas, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manage 41:633–646.Google Scholar
  28. Demirbas, A. 2001. Yields of hydrogen of gaseous products via pyrolysis from selected biomass samples. Fuel 80:1885–1891.Google Scholar
  29. Demirbas, A. 2002a. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Convers Manage 43:897–909.Google Scholar
  30. Demirbas, A. 2002b. Hydrogen production from biomass by gasification process. Energy Sources 24:59–68.Google Scholar
  31. Demirbas, A. 2004. Hydrogen-rich gas from fruit shells via supercritical water extraction. Int J Hydrogen Energy 29:1237–1243.Google Scholar
  32. Demirbas, A. 2005a. Hydrogen production via pyrolytic degradation of agricultural residues. Energy Sources 27:769–775.Google Scholar
  33. Demirbas, A. 2005b. Hydrogen production from biomass via supercritical water extraction. Energy Sources 27:1409–1417.Google Scholar
  34. Demirbas, M.F. 2006a. Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sources Part A 28:245–252. Google Scholar
  35. Demirbas, A. 2006b. Oily products from mosses and algae via pyrolysis. Energy Sources Part A 28:933–940.Google Scholar
  36. Demirbas, A. 2007. Production of biofuels from macroalgae and microalgae. Energy Edu Sci Technol 18:59–65. Google Scholar
  37. Demirbas, A. 2008a. Biohydrogen generation from organic wastes. Energy Sources Part A 30:475–482.Google Scholar
  38. Demirbas, A. 2008b. Hydrogen production from carbonaceous solid wastes by steam reforming. Energy Sources Part A 30:924–931.Google Scholar
  39. Demirbas, A., Arin, G. 2004. Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature. Energy Sources 26:1061–1069.Google Scholar
  40. Demirbas, A., Karslioglu, S., Ayas A. 1996. Hydrogen resources: conversion of black liquor to hydrogen-rich gaseous products. Fuel Sci Technol Int 14:451–465.Google Scholar
  41. Demirbas A., Caglar, A. 1998. Catalytic reforming of biomass and heavy oil residues to hydrogen. Energy Edu Sci Technol 1:45–52.Google Scholar
  42. Demirbas, A., Arin, G. 2004. Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature. Energy Sources 26:1061–1069.Google Scholar
  43. Dauvillee, D., Chochois, V., Steup, M., Haebel, S., Eckermann, N., Ritte, G., Ral, J.P., Colleoni, C., Hicks, G., Wattebled, F., Deschamps, P., D‘hulst, C., Lienard, L., Cournac, L., Putaux, J.L., Dupeyre, D., Ball, S.G. 2006. Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48:274–285.Google Scholar
  44. Feng, W., van der Kooi, H.J., Arons, J.D.S. 2004. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chem Eng Proc 43:1459–1467.Google Scholar
  45. Friedrich, K., Kordesch, K., Simader, G., Selan, M. 1995. The process cycle sponge-iron/hydrogen/iron oxide used for fuel conditioning in fuel cells. Proceedings of International Symposium on Fuel Cell System, New York.Google Scholar
  46. Gadhe, J.B., Gupta, R.B. 2007. Hydrogen production by methanol reforming in supercritical water: catalysis by in situ-generated copper nanoparticles. Int J Hydrogen Energy 32:2374–2381.Google Scholar
  47. Gaffron, H. 1939. Reduction of carbon dioxide with molecular hydrogen in green algae. Am J Bot 27:273–283.Google Scholar
  48. Gaffron, H. 1940. Carbon dioxide reduction with molecular hydrogen in green algae. Am J Bot 27:273–283.Google Scholar
  49. Gaffron, H., Rubin, J. 1942. Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219−240.Google Scholar
  50. Gercel, H.F. 2002. The effect of a sweeping gas flow rate on the fast pyrolysis of biomass. Energy Sources 24:633–642.Google Scholar
  51. Gest, H., Kamen, M.D. 1949a. Studies on the metabolism of photosynthetic bacteria; photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria. J Bacteriol 58:239–245.Google Scholar
  52. Gest, H., Kamen, M.D. 1949b. Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109:558–559.Google Scholar
  53. Gest, H., Blankenship, R.E. 2004. Time line of discoveries: anoxygenic bacterial photosynthesis. Photosynthesis Res 80:59–70. Google Scholar
  54. Gfeller, R.P., Gibbs, M. 1984. Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark-light. Plant Physiology 75:212–218.Google Scholar
  55. Groenestijn, J.W.V., Hazewinkel, J.H.O., Nienoord, M., Bussmann, P.J.T. 2002. Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int J Hydrogen Energy 27:1141–1147.Google Scholar
  56. Guan, Y.F., Deng, M.C., Yu, X.J., Zhang, W. 2004. Two-stage photobiological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19:69–73.Google Scholar
  57. Guo, L.J., Lu, Y.J., Zhang, X.M., Ji, C.M., Guan, Y., Pei, A.X. 2007. Hydrogen production by biomass gasification in supercritical water: a systematic experimental and analytical study. Catal Today 129:275–286.Google Scholar
  58. Hallenbeck, P.C., Benemann, J.R. 2002. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 27:1185–1193.Google Scholar
  59. Han, S.-K., Shin, H.-S. 2004. Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:569–577.Google Scholar
  60. Hao, X.H., Guo, L.J., Mao, X., Zhang, X.M., Chen, X.J. 2003. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrogen Energy 28:55–64.Google Scholar
  61. Hao, X.H., Guo, L.J., Zhang, X.M., Guan, Y. 2005. Hydrogen production from catalytic gasification of cellulose in supercritical water. Chem Eng J 110:57–65.Google Scholar
  62. Hawkes, F.R., Dinsdale, R.M., Hawkes, D.L., Huss, I. 2002. Sustainable fermentative hydrogen production: challenges for process optimization. Int J Hydrogen Energy 27:1339–1347.Google Scholar
  63. Howarth, D.C., Codd, G.A. 1985. The uptake and production of molecular hydrogen by unicellular cyanobacteria. J Gen Microbiol 131:1561–1569.Google Scholar
  64. Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L. 2005. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30:471–483.Google Scholar
  65. Kamen, M.D., Gest, H. 1949. Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubum. Science 109:560.Google Scholar
  66. Klas, D. 2004. Biomass for renewable energy and fuels. Encyclopedia of energy. Elsevier, Oxford.Google Scholar
  67. Kruse, A., Meier, D., Rimbrecht, P., Schacht, M. 2000. Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res 39:4842–2848. Google Scholar
  68. Koskinen, P.E.P., Kaksonen, A.H., Puhakka, J.A. 2007. The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor. Biotechnol Bioeng 97:742–758. Google Scholar
  69. Kotay, S.M., Das, D. 2008. Biohydrogen as a renewable energy resource: prospects and potentials. Int J Hydrogen Energy 33:258–263.Google Scholar
  70. Ledjeff-Hey, K., Kalk, T., Mahlendorf, F., Niemzig, O., Trautman, A., Roes, J. 2000. Portable PEFC generation with propane as fuel. J Power Sources 86:166–172. Google Scholar
  71. Levin, D.B., Pitt, L., Love, M. 2004. Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–85.Google Scholar
  72. Li, S., Xu, S., Liu, S., Yang, C., Lu, Q. 2004. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Proc Technol 85:1201–1211.Google Scholar
  73. Lindblad, P., Chirstensson, K., Lindberg, P., Fedorov, A., Pinto, F., Tsygankov, A. 2002. Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrogen Energy 27:1271–1281.Google Scholar
  74. Lower, H.H. 1963. Chemistry of coal utilization, Suppl vol. Wiley, New York, pp. 740–815.Google Scholar
  75. Lu, Y., Guo, L., Zhang, X., Yan, Q. 2007. Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chem Eng J 131:233–244.Google Scholar
  76. Lu, Y.J., Jin, H., Guo, L.J., Zhang, X.M., Cao, C.Q., Guo, X. 2008. Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor. Int J Hydrogen Energy 33:6066–6075.Google Scholar
  77. Madamwar, D., Garg, N., Shah, V. 2000. Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767.Google Scholar
  78. Maschio, G., Lucchesi, A., Stoppato, G. 1994. Production of syngas from biomass. Biores Technol 48:119–126.Google Scholar
  79. Masukawa, H., Mochimaru, M., Sakurai, H. 2002. Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. Int J Hydrogen Energy 27:1471–1474.Google Scholar
  80. Melis, A., Happe, T. 2001. Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–48.Google Scholar
  81. Melis, A., Melnicki, M.R. 2006. Integrated biological hydrogen production. Int J Hydrogen Energy 31:1563–1573.Google Scholar
  82. Mertens, R., Liese, A. 2004. Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15:343–348.Google Scholar
  83. Miao, X., Wu, Q. 2004. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93.Google Scholar
  84. Midilli, A., Rzayev, P., Hayati, O., Teoman, A. 2000. Solar hydrogen production from hazelnut shells. Int J Hydrogen Energy 25:723–732.Google Scholar
  85. Milne, T.A., Elam, C.C., Evans, R.J. 2002. Hydrogen from biomass: state of the art and research challenges 1–82. National Renewable Energy Laboratory, Golden, CO.Google Scholar
  86. Minowa, T., Zhen, F., Ogi, T. 1997. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J. Supercritical Fluids 13:253–259.Google Scholar
  87. Miura, Y. 1995. Hydrogen production by biophotolysis based on microalgal photosynthesis. Proc Biochem 30:1–7.Google Scholar
  88. Miura, Y., Akano, T., Fukatsu, K., Miyasaka, H., Mizoguchi, T., Yagi, K., Maeda, I., Ikuta, Y., Matsumoto, H. 1997. Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conver Manage 38:S533–S537.Google Scholar
  89. Miura, Y., Akano, T., Fukatsu, K., Miyasaka, H., Mizoguchi, T., Yagi, K., Maeda, I., Ikuta, Y., Matsumoto, H. 1995. Hydrogen production by photosynthetic microorganisms. Energy Convers Manage 36:903–906.Google Scholar
  90. Mohan, D., Pittman, C.U., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889.Google Scholar
  91. Nandi, R., Sengupta, S. 1998. Microbial production of hydrogen: an overview. Critical Rev Microbiol 24:61–84.Google Scholar
  92. Nath, K., Das, D. 2003. Hydrogen from biomass. Current Sci 85:265–271.Google Scholar
  93. Nath, K., Das, D. 2004. Biohydrogen production as a potential energy resource: present state-of-art. J Sci Ind Res 63:729–738.Google Scholar
  94. Ormerod, J.G., Gest, H. 1962. IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriol Rev 26:51–66.Google Scholar
  95. Ormerod, J.G., Ormerod, K.S., Gest. H. 1961. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 94:449–463.Google Scholar
  96. Patil, K.Z. 1987. Hydrogen. Chem Age India 38:519–527.Google Scholar
  97. Paul, P.F.M., Wise, W.S. 1971. The principle of gas extraction. Mills and Boon, London.Google Scholar
  98. Prince, R.C., Kheshgi, H.S. 2005. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31.Google Scholar
  99. Putun, A.E. 2002. Biomass to bio-oil via fast pyrolysis of cotton straw and stalk. Energy Sources 24:275–285.Google Scholar
  100. Rapagna, F.P.U. 1996. Hydrogen from biomass by steam gasification. Hydrogen Energy Progress XI, Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart, Germany, 23–28 June 1996, 1:907–912.Google Scholar
  101. Rapagna, S., Foscolo, P.U. 1998. Catalytic gasification of biomass to produce hydrogen-rich gas. Int J Hydrogen Energy 23:551–557.Google Scholar
  102. Safrany, D.R. 1971. A potential large scale plasma process: synthesis of inexpensive hydrogen by using a thermonuclear device to vaporize waste organic materials. Chem Eng Progress Symp Ser 67:103–108.Google Scholar
  103. Salmenoja, K. 1993. Black-liquor gasification: theoretical and experimental studies. Biores Technol 46:167–171.Google Scholar
  104. Sasikala, K., Ramana, C.V., Rao, P.R., Kovacs, K.L. 1993. Anoxygenic phototrophic bacteria: physiology and advances in hydrogen technology. Adv Appl Microbio 38:211–295.Google Scholar
  105. Serebryakova, L.T., Sheremetieva, M., Tsygankov, A. 1998. FEMS Microbiology Lett 166:89. Google Scholar
  106. Shahbazov, Sh.J., Usupov, I. 1994. Non-trading sources of energy for hydrogen. Int J Hydrogen Energy 19:863–864.Google Scholar
  107. Stevens, D.J. 2001. Hot gas conditioning: Recent progress with larger-scale biomass gasification systems. National Renewable Energy Laboratory, NREL/SR-510-29952, Golden, CO.Google Scholar
  108. Sung, S. 2004. Biohydrogen production from renewable organic wastes. Final Technical Report. Iowa State University, Ames, IA.Google Scholar
  109. Susta, M.R., Luby, P., Mat, S.B. 2003. Biomass energy utilization and environment protection commercial reality and outlook, Power Gen Asia. download/pool/industrialheatpower_02.pdf. Accessed 2009.Google Scholar
  110. Tran, D.Q., Charanjit, R. 1978. A kinetic model for pyrolysis of Douglas fir bark. Fuel 57:293–298.Google Scholar
  111. Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L., Seibert, M. 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautrophic conditions. Int J Hydrogen Energy 31:1574–1585.Google Scholar
  112. Van Ginkel S., Sung, S., Lay, J.J. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730.Google Scholar
  113. Van Ginkel, S.W., Logan, B. 2005. Increased biological hydrogen production with reduced organic loading. Water Res 39:3819–3826.Google Scholar
  114. Vayisoglu, E.S., Bartle, K.D., Erbatur, N.G., Frere, B., Snape, C.E., Erbatur, O. 1996. Chemical composition of SFE extracts obtained from coal and maceral concentrates. Fuel Process Technol 46:99–115.Google Scholar
  115. Vijayaraghavan, K., Soom, M.A.M. 2006. Trends in biohydrogen generation: a review. Environ Sci 3:255–271.Google Scholar
  116. Viswanathan, B. 2006. An introduction to energy sources. Indian Institute of Technology, Madras, India.Google Scholar
  117. Wagner, E.S., Froment, G.F. 1992. Steam reforming analyzed. Hydrocarbon Proc July:69–77.Google Scholar
  118. Walcher, G., Girges, S., Weingartner, S. 1996. Hydrogen Energy Progress XI, Proceedings of the 11th World Hydrogen Conference, 1996, Stuttgart.Google Scholar
  119. Wang, D., Czernik, S., Montane, D., Mann, M., Chornet, E. 1997. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind Eng Chem Res 36:1507–1518.Google Scholar
  120. Wang, D., Czernik, S., Chornet, E. 1998. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy Fuels 12:19–24.Google Scholar
  121. Warnecke, R. 2000. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 18:489–497.Google Scholar
  122. Watanabe, M., Iida, T., Inomata, H. 2006. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Convers Manage 47:3344–3350.Google Scholar
  123. Weissman, J.C., Benemann, J.R. 1977. Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Appl Environ Microbiol 33:123.Google Scholar
  124. White, A.L., Melis, A. 2006. Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a Rubisko-less mutant. Int J Hydrogen Energy 31:455–465.Google Scholar
  125. Yan, Q., Guo, L., Lu, Y. 2006. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers Manage 47:1515–1528.Google Scholar
  126. Yanik, J., Ebale, S., Kruse, A., Saglam, M., Yuksel, M. 2007. Biomass gasification in supercritical water: Part 1. Effect of the nature of biomass. Fuel 86:2410–2415.Google Scholar
  127. Yogev, A., Kribus, A., Epstein, M., Kogan, A. 1998. Solar tower reflector systems: a new approach for high-temperature solar plants. Int J Hydrogen Energy 23:239–245.Google Scholar

Copyright information

© Springer London 2009

Personalised recommendations