Advertisement

Ultra-fine Grain Materials by Severe Plastic Deformation: Application to Steels

  • Satyam Suwas
  • Ayan Bhowmik
  • Somjeet Biswas

Abstract

Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.

Keywords

Severe Plastic Deformation Strain Path Accumulative Roll Bond Equal Channel Angular Extrusion Accumulative Roll Bonding Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Lee, P.R Berbon, M. Furukawa, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, T.G. Langdon,. Mater. Sci. Eng.A272, 1999, p.63Google Scholar
  2. [2]
    A.J. Barnes. Mater. Sci. Forum, 170–172, 1994, p. 701.CrossRefGoogle Scholar
  3. [3]
    K. Osada and H. Yoshida. Mater. Sci. Forum, 170–172, 1994, p.715.CrossRefGoogle Scholar
  4. [4]
    T.G. Langdon Acta. Mater. 42,1994 ,p.2437CrossRefGoogle Scholar
  5. [5]
    P.B. Prangnell , J.R. Bowen, A. Gholinia, Proceedings of the 22nd Riso International Symposium on Materials Science, Science of Metastable and nanocrystalline Alloys Structure, Properties and Modeling, Riso National Laboratory, Roskilde, Denmark, 2001, p.105.Google Scholar
  6. [6]
    P.B. Prangnell, J.R. Bowen and F.J. Humphreys, Mat.Sci. and Tech., 16, 2000, p.1246CrossRefGoogle Scholar
  7. [7]
    E.O. Hall Proc. Roy. Soc. B, 64,1951, p. 747ADSGoogle Scholar
  8. [8]
    N.J. Petch J. Iron Steel. Inst., 174, 1953, p. 25Google Scholar
  9. [9]
    Valiev R.Z., editor. Ultrafine-grained materials prepared by severe plastic deformation, vol. 21, Annales de Chimie. Science des Materiaux, 1996, p. 369, Special issue.Google Scholar
  10. [10]
    H. Gleiter. Progr. Mat. Sci,33,1989, p. 223.CrossRefGoogle Scholar
  11. [11]
    J.R. Weertman. Mater. Sci. Eng A166, 1993, p. 161.Google Scholar
  12. [12]
    C.C. Koch and Y.S. Cho. Nanostructured Mater, 1, 1992, p. 207.CrossRefGoogle Scholar
  13. [13]
    D.G. Morris. In: Mechanical behavior of nanostructured materials Trans Tech. Publ, Switzerland, 1998, p. 85.Google Scholar
  14. [14]
    R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov. Mater. Sci. Eng A168, 1993, p. 141.Google Scholar
  15. [15]
    R.Z. Valiev, O.A. Kaibyshev, R.I. Kuznetsov, R.Sh. Musalimov and N.K. Tsenev. DAN SSSR 301 4, 1988, p. 864.Google Scholar
  16. [16]
    R.Z. Valiev, I.V. Alexandrov and R.K. Islamgaliev. In: G.M. Chow and N.I. Noskova Editors, Nanocrystalline materials: science and technologyNato ASI Kluwer Academic Publishers, Dordrecht, 1998, p. 121.Google Scholar
  17. [17]
    V. A. Pavlov. Phys. Met. and Metallogr 67 ,1989, p. 924.Google Scholar
  18. [18]
    R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev. Mater. Sci. Eng A137, 1991, p. 35.Google Scholar
  19. [19]
    G. Langford and M. Cohen. Trans. ASM 82, 1969, p. 623.Google Scholar
  20. [20]
    V.V. Rybin. Large plastic deformations and destruction of metals Metallurgia, Moscow, 1987.Google Scholar
  21. [21]
    F. Li and P.S. Bate, Acta Metall Mater 39, 1991, p. 2639.CrossRefGoogle Scholar
  22. [22]
    J. Gil Sevillano, P. Van Houtte and E. Aernoudt. Progr. Mat. Sci 25, 1980, p. 69.CrossRefGoogle Scholar
  23. [23]
    D.A. Hughes and N. Hansen, Metall Trans A 24, 1993, p. 2021.Google Scholar
  24. [24]
    N. Hansen and D. Juul Jensen, Phil Trans R Soc Lond A 357, 1999, p. 1447.CrossRefADSGoogle Scholar
  25. [25]
    P.J. Hurley and F.J. Humphreys, Acta Mater, 51, 2003, p. 1087.CrossRefGoogle Scholar
  26. [26]
    Q. Liu, D. Juul Jensen and N. Hansen, Acta Mater, 46, 1998, p. 5819.CrossRefGoogle Scholar
  27. [27]
    J.R. Bowen, A. Gholinia, S.M. Roberts and P.B. Prangnell, Mat Sci. Engg. A287, 2000, p.87.CrossRefGoogle Scholar
  28. [28]
    J.R. Bowen, P.B Prangnell, and F.J. Humphreys, Mat Sci. Forum, 331–337, 2000, p. 545.CrossRefGoogle Scholar
  29. [29]
    J.R. Bowen, P.B. Prangnell, and F.J. Humphreys, Proceedings of the 20th Riso International Symposium, Deformation-induced Microstructures: Analysis and Relation to Properties, Riso National Laboratory, Roskilde, Denmark, 1999.Google Scholar
  30. [30]
    F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, Phil. Trans. R. Soc.Lond. 357A, 2003, p.1663.Google Scholar
  31. [31]
    Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, T.G. Langdon, J. Mater. Res, 11, 1996, p.1880.CrossRefADSGoogle Scholar
  32. [32]
    A. Gholinia, F.J. Humphreys, P.B. Prangnell, Mat.Sci. and Tech.,16, p. 1251.Google Scholar
  33. [33]
    R.Z. Valiev, Yu. V. Ivanisenko, E.F. Rauch and B. Baudelet. Acta Mater 44, 1997, p. 4705.CrossRefGoogle Scholar
  34. [34]
    R.Z. Valiev, E.V. Kozlov, Yu. F. Ivanov, J. Lian, A.A. Nazarov and B. Baudelet, Acta metall. mater. 42, 1994, p. 2467CrossRefGoogle Scholar
  35. [35]
    A.D. Rollet and U.F. Kocks, Solid State Phenomena, 35–36, 1994, p. 1.Google Scholar
  36. [36]
    R.Z. Valiev, K. Islamgaliev and I.P. Semenova , Mat Sci Engg A 463, 2007, p. 2.CrossRefGoogle Scholar
  37. [37]
    R.Z. Valiev and R.K. Islamgaliev. Fiz. Met. Metalloved 85, 1998, p. 161.Google Scholar
  38. [38]
    V.M. Segal, V.I. Reznikov, A.E. Drobyshevkij and V.I. Kopylov. Metally 1, 1981, p. 115.Google Scholar
  39. [39]
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon. Scripta Mater 35 (1996), p. 143.CrossRefGoogle Scholar
  40. [40]
    V.M. Segal. Mater. Sci. Eng A197, 1995, p. 157.Google Scholar
  41. [41]
    V.M. Segal, V.I. Reznikov, V.I. Kopylov, D.A. Pavlik and V.F. Malyshev. In: Processes of plastic transformation of metals Navuka i Teknika, Minsk, 1984, p. 295.Google Scholar
  42. [42]
    Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon. Acta Mater 46, 1998, p. 1589.CrossRefGoogle Scholar
  43. [43]
    S. Ferrase, V.M. Segal, K.T. Hartwig and R.E. Goforth. Metall. Mater. Trans 28A, 1997, p. 1047.CrossRefGoogle Scholar
  44. [44]
    Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon. Acta Mater 45, 1997, p. 4733.CrossRefGoogle Scholar
  45. [45]
    N.H. Ahmadeev, R.Z. Valiev, V.I. Kopylov and R.R. Mulyukov. Russian Metally 5, 1992, p. 96.Google Scholar
  46. [46]
    N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova and V. A. Sazonova. Fiz. Met. Metalloved 61, 1986, p. 1170.Google Scholar
  47. [47]
    N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov and M.V. Degtyarov. Fiz. Met. Metalloved, 62, 1986, p. 566.Google Scholar
  48. [48]
    Valiev RZ. Synthesis and processing of nanocrystalline powder. In: David L. Bourell, editors. The Minerals, Metals and Materials Society, 1996, p.153.Google Scholar
  49. [49]
    I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev and R.Z. Valiev. Nanostructured Mater 10, 1998, p. 49.CrossRefGoogle Scholar
  50. [50]
    I.V. Alexandrov, Y. Zhu, T. Lowe, R.K. Islamgaliev and R.Z. Valiev. Metall. Mater. Trans 29A, 1998, p. 2253.CrossRefGoogle Scholar
  51. [51]
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong, Scripta Mater,39, 1998, p. 1221.CrossRefGoogle Scholar
  52. [52]
    Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta Mater, 47, 1999, p. 579.CrossRefGoogle Scholar
  53. [53]
    S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai, Scripta Mater, 46, 2002, p. 281.CrossRefGoogle Scholar
  54. [54]
    S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater Sci. Engg A325, 2002, p. 228.Google Scholar
  55. [55]
    L. Jiang, M.T. Pérez-Prado, P. A. Gruber, E. Arzt, O.A. Ruano and M.E. Kassner, Acta Mater 56, 2008, p. 1228.CrossRefGoogle Scholar
  56. [56]
    S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo and K. Hono, Acta Mater, 55, 2007, p. 2885.CrossRefGoogle Scholar
  57. [57]
    J.A. del Valle, M.T. Pérez-Prado and O.A. Ruano, Mater. Sci. Engg A 410–411, 2005, p. 353.Google Scholar
  58. [58]
    N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater., 40,1999, p. 795.CrossRefGoogle Scholar
  59. [59]
    J.Y. Huang, Y.T. Zhu, H. Jiang and T.C. Lowe, Acta Mater, 49, 2001, p. 1497.CrossRefGoogle Scholar
  60. [60]
    Dong Hyuk Shin, Jong-Jin Park, Yong-Seog Kim and Kyung-Tae Park, Mater Sci. Engg A 328, 2002, p. 98.CrossRefGoogle Scholar
  61. [61]
    Zhu ,Y.T, Metall. Mater. Trans. 32A, 2001, p. 1559.CrossRefGoogle Scholar
  62. [62]
    M.Y. Huh, J.P. Lee, J.C. Lee, J.W. Park, Y.H. Chung, Mater. Sci. Forum. 396, 2002, p. 447.CrossRefGoogle Scholar
  63. [63]
    Y. Saito, H. Utsunomiya, H. Suzuki and T. Sakai, Scripta Mater., 42, 2000, p.1139–1144.CrossRefGoogle Scholar
  64. [64]
    J.-C. Lee., H.-K. Seok, J.-H. Han, Y.-H. Chung. Materials Research Bulletin, 36, 5, 2001, p. 997.CrossRefGoogle Scholar
  65. [65]
    G.J. Raab, R.Z. Valiev, T.C. Lowe, Y.T. Zhu , Mater Sci. Engg A 382, 2004, p.30.CrossRefGoogle Scholar
  66. [66]
    W. Skrotzki, N. Scheerbaum, C.-G. Oertel, R. Arruffat-Massion, Satyam Suwas, L.S. Tóth, Acta Mater, 2007, 55, p. 2013.CrossRefGoogle Scholar
  67. [67]
    Beyerlein, L.S. Tóth, C.N. Tomé and Satyam Suwas, Philosophical Magazine, 87, 2007, p. 885.CrossRefADSGoogle Scholar
  68. [68]
    W. Skrotzki, B. Klöden, I. Hünsche, R. Chulist, Satyam Suwas, L.S. Tóth, Mat Sci Forum, 558–559, 2007, p. 575.CrossRefGoogle Scholar
  69. [69]
    Satyam Suwas, R. Arruffat Massion, L.S. Tóth, J.J. Fundenburger A. Eberhardt and W. Skrotzki, Metall. and Mater Trans 37A, 2007, p. 739.ADSGoogle Scholar
  70. [70]
    W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, Satyam Suwas, L.S. Tóth, Mat Sci Forum, 503–504, 2006, p.99.CrossRefGoogle Scholar
  71. [71]
    Satyam Suwas, L.S. Toth, J.-J. Fundenberger, A. Eberhardt, Solid State Phenomena, 105, 2005, p. 357.CrossRefGoogle Scholar
  72. [72]
    R. Arruffat-Massion, Satyam Suwas, L.S. Tóth, W. Skrotzki, J.-J. Fundenberger, A. Eberhardt, Mat Sci Forum ,495–497, 2005, p. 839.CrossRefGoogle Scholar
  73. [73]
    László S. Tóth, Roxane Arruffat Massion, Lionel Germain, Seung C. Baik, Satyam Suwas, Acta Mater, 52, 2004, p. 1885.CrossRefGoogle Scholar
  74. [74]
    J.-P. Mathieu, S. Suwas, A. Ebarhardt, L.S. Toth, P. Moll. Journal of Mat. Proc. Tech. 173, 2006, p. 29–33.CrossRefGoogle Scholar
  75. [75]
    S. Li, I.J. Beyerlein. Model Simul Mater Sci Engg, 13, 2005, p.509.CrossRefADSGoogle Scholar
  76. [76]
    S. Li, I.J. Beyerlein, MAM Bourke. Mater Sci Eng A394, 2005, p.66.Google Scholar
  77. [77]
    S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, C.H.J. Davies. Acta Mater, 54, 2006, p. 1087.CrossRefGoogle Scholar
  78. [78]
    F Dalla Torre, R Lapovok, J Sandlin, PF Thomson, CHJ Davies, EV Pereloma. Acta Mater, 52, 2005, p. 4819.CrossRefGoogle Scholar
  79. [79]
    S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, C.H.J. Davies. Acta Mater, 55, 2007, p.1017.CrossRefGoogle Scholar
  80. [80]
    A.A. Gazder, F. Dalla Torre, C.F. Gu, C.H.J. Davies and E.V. Pereloma, Mater Sci. Engg A415, 2006, p. 126.Google Scholar
  81. [81]
    J. De Messemaeker, B. Verlinden and J. Van Humbeeck, Acta Mater, 53, 2005, p. 4245.CrossRefGoogle Scholar
  82. [82]
    M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Mater. Sci. Eng.A 257 (1998), p. 328.CrossRefGoogle Scholar
  83. [83]
    Dong Hyuk Shin and Kyung-Tae Park, Mater. Sci. Eng. A 410–411, 2005, p. 299.Google Scholar
  84. [84]
    D. H. Shin, B.C. Kim, Y.S. Kim and K.-T. Park, Acta Mater. 48 (2000), p. 2247.CrossRefGoogle Scholar
  85. [85]
    Y. Fukuda, K. Oh-ishi, Z. Horita and T.G. Langdon, Acta Mater. 50 (2002), p. 553.CrossRefGoogle Scholar
  86. [86]
    K.-T. Park, Y.S. Kim, J.G. Lee and D. H. Shin, Mater. Sci. Eng. A293 (2000), p. 165.Google Scholar
  87. [87]
    Ho-Kyung Kim, Myung-Il Choi, Chin-Sung Chung and Dong Hyuk Shin, Mater. Sci. Eng. A340, 2003, p.243.CrossRefGoogle Scholar
  88. [88]
    Dong Hyuk Shin, Chang Woo Seo, Jongryoul Kim, Kyung-Tae Park and Wung Young Choo, Scripta Mater., 42,2000,p. 695.CrossRefGoogle Scholar
  89. [89]
    Young Il Son, Young Kook Lee, Kyung-Tae Park, Chong Soo Lee and Dong Hyuk Shin, Acta Mater.,53,2005,p.3125.CrossRefGoogle Scholar
  90. [90]
    A.L.M. Costa, A.C.C. Reis, L. Kestens and M.S. Andrade, Mater. Sci. Engg A406, 2005, p.27.Google Scholar
  91. [91]
    N. Tsuji, R. Ueji and Y. Minamino, Scripta Mater, 47, 2002, p.69.CrossRefGoogle Scholar
  92. [92]
    A. Bhowmik, Satyam Suwas, R.K. Ray, D. Bhattacharjee, Acta Mater, to be communicated.Google Scholar
  93. [93]
    Bhowmik, Satyam Suwas, R.K. Ray, D. Bhattacharjee, in manuscript.Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Satyam Suwas
    • 1
  • Ayan Bhowmik
    • 1
  • Somjeet Biswas
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations