WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations

  • Christian Feichtinger
  • Jan Götz
  • Stefan Donath
  • Klaus Iglberger
  • Ulrich Rüde

Abstract

In this chapter, a software concept for massively parallel computational fluid dynamics (CFD) applications is introduced. The focus thereby lies on the parallelization, which is based on a domain partitioning scheme named patch concept. This concept also enables a seamless specialization of the partitions to different application features as well as the possibility for further optimization such as memory reduction. It is discussed in detail how our design ensures an efficient and flexible implementation. The suitability and efficiency of this concept is demonstrated and evaluated with the waLBerla project, which aims at the development of an efficient massively parallel lattice Boltzmann framework providing the necessary features for several CFD applications. To discuss the suitability of the parallelization for massively parallel usage, various test scenarios have been investigated on different architectures. These tests include serial, weak and strong scaling experiments up to 810 cores and up to a domain size of 15303 lattice cells.

Keywords

Message Passing Interface Lattice Boltzmann Method Lattice Boltzmann Model Lattice Boltzmann Equation Lattice Boltzmann Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Feichtinger, J. Götz, S. Donath, K. Iglberger, U. Rüde, Concepts of waLBerla prototype 0.1, Tech. Rep. 07–10, University of Erlangen-Nuremberg, Computer Science 10 – Systemsimulation (2007).Google Scholar
  2. 2.
    K. Iglberger, N. Thürey, U. Rüde, Simulation of moving particles in 3D with the Lattice Boltzmann method, Comp. Math. Appl. 55 (7) (2008) 1461–1468.MATHCrossRefGoogle Scholar
  3. 3.
    C. Binder, C. Feichtinger, H. Schmid, N. Thürey, W. Peukert, U. Rüde, Simulation of the hydrodynamic drag of aggregated particles, J. Colloid Interface Sci. 301 (2006) 155–167.CrossRefGoogle Scholar
  4. 4.
    J. Horbach, D. Frenkel, Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids, Phys. Rev. E 64 (6) (2001) 061507.CrossRefGoogle Scholar
  5. 5.
    M. Stürmer, J. Götz, G. Richter, A. Dörfler, U. Rüde, Blood flow simulation on the Cell Broadband Engine using the lattice Boltzmann method, Tech. Rep. 07–9, University of Erlangen- Nuremberg, Computer Science 10 – Systemsimulation, submitted to the International Conference for Mesoscopic Methods in Engineering and Science, ICMMES (2007).Google Scholar
  6. 6.
    C. Körner, M. Thies, T. Hofmann, N. Thürey, U. Rüde, Lattice Boltzmann model for free surface flow for modeling foaming, J. Stat. Phys. 121(1-2) (2005) 179–196.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    N. Thürey, T. Pohl, U. Rüde, M. Oechsner, C. Körner, Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization, Comput. Fluid 35(8–9) (2006) 934–939.CrossRefGoogle Scholar
  8. 8.
    Information on fuel cells, http://www.fuelcells.org (2008).
  9. 9.
    Information on the HLRB II, http://www.lrz-muenchen.de/services/compute/hlrb/ (2008).
  10. 10.
    G. McNamara, G. Zanetti, Use of the Boltzman equation to Simulate Lattice Gas Automata, Phys. Rev. Lett. 61 (20) (1988) 2332–2335.CrossRefGoogle Scholar
  11. 11.
    X. He, L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E 56 (6) (1997) 6811–6817.CrossRefGoogle Scholar
  12. 12.
    M. Junk, A. Klar, L.-S. Luo, Asymptotic analysis of the lattice Boltzmann equation, J. Comput. Phys. 210 (2) (2005) 676–704.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (3) (1993) 1815–1819.CrossRefGoogle Scholar
  14. 14.
    T. Zeiser, H.-J. Freund, J. Bernsdorf, P. Lammers, G. Brenner, F. Durst, Detailed Simulation of Transport Processes in Reacting Multi-Species Flows Through Complex Geometries by Means of the Lattice Boltzmann method, in: In High Performance Computing in Science and Engineering ’01, Transactions of the High Performance Computing Center Stuttgart (HLRS), Springer (2002).Google Scholar
  15. 15.
    P. Asinari, Multiple-relaxation-time lattice boltzmann scheme for homogeneous mixture flows with external force, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 77 (5) (2008) 056706.MathSciNetGoogle Scholar
  16. 16.
    A. Artoli, A. Hoekstra, P. Sloot,Mesoscopic simulations of systolic flow in the human abdominal aorta, J. Biomech. 39 (5) (2006) 873–884.CrossRefGoogle Scholar
  17. 17.
    C. Körner, T. Pohl, U. Rüde, N. Thürey, T. Hofmann, FreeWIHR: Lattice Boltzmann methods with free surfaces and their application in material technology, in: A. Bode, F. Durst (Eds.), High Performance Computing in Science and Engineering, Garching 2004, Springer (2005), pp. 225–236.Google Scholar
  18. 18.
    C. Körner, T. Pohl, U. Rüde, N. Thürey, T. Zeiser, Parallel Lattice Boltzmann Methods for CFD Applications, in: A. Bruaset, A. Tveito (Eds.), Numerical Solution of Partial Differential Equations on Parallel Computers, Vol. 51 of Lecture Notes for Computational Science and Engineering, Springer (2005) Ch. 5, pp. 439–465.Google Scholar
  19. 19.
    J. Wilke, T. Pohl, M. Kowarschik, U. Rüde, Cache Performance Optimizations for Parallel Lattice Boltzmann Codes, in: Proc. of the EuroPar-03 Conf., Vol. 2790 of Lecture Notes in Computer Science, Springer (2003), pp. 441–450.Google Scholar
  20. 20.
    G. Wellein, T. Zeiser, G. Hager, S. Donath, On the single processor performance of simple Lattice Boltzmann kernels, Comput. Fluid 35 (8–9) (2006) 910–919.CrossRefGoogle Scholar
  21. 21.
    D. Hänel, Molekulare Gasdynamik, Springer (2004).Google Scholar
  22. 22.
    D. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer (2000).Google Scholar
  23. 23.
    D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computation with the method of lattice Boltzmann equation, Prog. Aero. Sci. 39 (5) (2003) 329–367.CrossRefGoogle Scholar
  24. 24.
    Y. H. Qian, D. D’Humiôlres, P. Lallemand, Lattice BGK Models for Navier-Stokes equation, Europhys. Lett. 17 (6) (1992) 479–484.MATHCrossRefGoogle Scholar
  25. 25.
    J. Götz, Numerical Simulation of Blood Flow with Lattice Boltzmann Methods, Master’s thesis, University of Erlangen-Nuremberg, Computer Science 10 – Systemsimulation (2006).Google Scholar
  26. 26.
    Information on the Juelicher Initiative Cell Cluster (JUICE), http://www.fz-juelich.de/jsc/service/juice (2008).
  27. 27.
    Top500, The top 500 supercomputer sites, http://www.top500.org (2008).
  28. 28.
    T. Zeiser, J. Götz, M. Stürmer, On performance and accuracy of lattice Boltzmann approaches for single phase flow in porous media: A toy became an accepted tool – How to maintain its features despite more and more complex (physical) models and changing trends in high performance computing!?On performance and accuracy of lattice Boltzmann approaches for single phase flow in porous media, in: Proceedings of 3rd Russian-GermanWorkshop on High Performance Computing, Novosibirsk, Springer (2008).Google Scholar
  29. 29.
    J. D. McCalpin, STREAM: Sustainable memory bandwidth in high performance computers, http://www.cs.virginia.edu/stream/ (1991–2008).
  30. 30.
    T. Zeiser, Private correspondence with Thomas Zeiser, Regional Computing Center Erlangen (RRZE) (Aug. 2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christian Feichtinger
    • 1
  • Jan Götz
    • 1
  • Stefan Donath
    • 1
  • Klaus Iglberger
    • 1
  • Ulrich Rüde
    • 1
  1. 1.Chair for System SimulationFriedrich-Alexander University Erlangen-NurembergGermany

Personalised recommendations