Advertisement

3D Face Recognition: Technology and Applications

  • Berk GökberkEmail author
  • Albert Ali Salah
  • Neşe Alyüz
  • Lale Akarun
Part of the Advances in Pattern Recognition book series (ACVPR)

Abstract

Abstract 3D face recognition has received a lot of attention in the last decade, leading to improved sensors and algorithms that promise to enable large-scale deployment of biometric systems that rely on this modality. This chapter discusses advances in 3D face recognition with respect to current research and technology trends, together with its open challenges. Five real-world scenarios are described for application of 3D face biometrics. Then we provide a comparative overview of the currently available commercial sensors, and point out to research databases acquired with each technology. The algorithmic aspects of 3D face recognition are broadly covered; we inspect automatic landmarking and automatic registration as sine qua non parts of a complete 3D facial biometric system. We summarize major coordinated actions in evaluating 3D face recognition algorithms, and conclude with a case study on a recent and challenging database.

Keywords

Face Recognition Gesture Recognition Iterative Close Point Biometric Template Automatic Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The BJUT-3D Large-Scale Chinese Face Database, MISKL-TR-05-FMFR-001, 2005.Google Scholar
  2. 2.
    A.F. Abate, M. Nappi, S. Ricciardi, and G. Sabatino. Fast 3D face recognition based on normal map. In IEEE Int. Conf. on Image Processing, pages 946–949, 2005.Google Scholar
  3. 3.
    A.F. Abate, M. Nappi, D. Riccio, and G. Sabatino. 3D face recognition using normal sphere and general Fourier descriptor. In Proc. Int. Conf. on Pattern Recognition, 2006.Google Scholar
  4. 4.
    A.F. Abate, M. Nappi, D. Riccio, and G. Sabatino. 2D and 3D face recognition: A survey. Pattern Recognition Letters, 28:1885–1906, 2007.CrossRefGoogle Scholar
  5. 5.
    E. Akagünduz and I. Ulusoy. 3D object representation using transform and scale invariant 3D features. In Int. Conf. on Computer Vision, pages 1–8, 2007.Google Scholar
  6. 6.
    H.Ç. Akaki n, A.A. Salah, L. Akarun, and B. Sankur. 2D/3D facial feature extraction. In Proc. SPIE, volume 6064, pages 441–452. SPIE, 2006.Google Scholar
  7. 7.
    L. Akarun, B. Gökberk, and A.A. Salah. 3D face recognition for biometric applications. In Proc. European Signal Processing Conference, Antalya, Turkey, 2005.Google Scholar
  8. 8.
    F.R. Al-Osaimi, M. Bennamoun, and A. Mian. Integration of local and global geometrical cues for 3D face recognition. Pattern Recognition, 41(2):1030–1040, 2008.zbMATHCrossRefGoogle Scholar
  9. 9.
    N. Alyüz, B. Gökberk, and L. Akarun. A 3D face recognition system for expression and occlusion invariance. IEEE Second Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS’08), 2008.Google Scholar
  10. 10.
    N. Alyüz, B. Gökberk, H. Dibeklioğlu, and L. Akarun. Component-based registration with curvature desciptors for expression insensitive 3D face recognition. 8th IEEE Int. Conf. on Automatic Face and Gesture Recognition, 2008.Google Scholar
  11. 11.
    N. Alyüz, B. Gökberk, H. Dibeklioğlu, A. Savran, A.A. Salah, L. Akarun, and B. Sankur. 3D face recognition benchmarks on the Bosphorus database with focus on facial expressions. In Proc. First COST 2101 Workshop on Biometrics and Identity Management (BIOID), Denmark, May 2008.Google Scholar
  12. 12.
    B.B. Amor, M. Ardabilian, and L. Chen. New experiments on ICP-based 3D face recognition and authentication. In Int. Conf. on Pattern Recognition, 2006.Google Scholar
  13. 13.
    S. Arca, P. Campadelli, and R. Lanzarotti. A face recognition system based on automatically determined facial fiducial points. Pattern Recognition, 39:432–443, 2006.zbMATHCrossRefGoogle Scholar
  14. 14.
    C. BenAbdelkader and P.A. Griffin. Comparing and combining depth and texture cues for face recognition. Image and Vision Computing, 23(3):339–352, 2005.CrossRefGoogle Scholar
  15. 15.
    P. Besl and N. McKay. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.CrossRefGoogle Scholar
  16. 16.
    G.M. Beumer, Q. Tao, A.M. Bazen, and R.J.N. Veldhuis. A landmark paper in face recognition. Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition, pages 73–78, 2006.Google Scholar
  17. 17.
    C. Beumier and M. Acheroy. Automatic 3D face authentication. Image and Vision Computing, 18(4):315–321, 2000.CrossRefGoogle Scholar
  18. 18.
    C. Beumier and M. Acheroy. Face verification from 3D and grey level cues. Pattern Recognition Letters, 22:1321–1329, 2001.zbMATHCrossRefGoogle Scholar
  19. 19.
    V. Blanz and T. Vetter. Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9):1063–1074, 2003.CrossRefGoogle Scholar
  20. 20.
    C. Boehnen and T. Russ. A fast multi-modal approach to facial feature detection. In Proc. 7th IEEE Workshop on Applications of Computer Vision, pages 135–142, 2005.Google Scholar
  21. 21.
    F.L. Bookstein. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:567–585, 1989.zbMATHCrossRefGoogle Scholar
  22. 22.
    F.L. Bookstein. Shape and the information in medical images: A decade of the morphometric synthesis. Computer Vision and Image Understanding, 66(2):97–118, 1997.CrossRefGoogle Scholar
  23. 23.
    K. Bowyer, K. Chang, and P. Flynn. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 101:1–15, 2006.CrossRefGoogle Scholar
  24. 24.
    A.M. Bronstein, M.M. Bronstein, and R. Kimmel. Three-dimensional face recognition. International Journal of Computer Vision, 64(1):5–30, 2005.CrossRefGoogle Scholar
  25. 25.
    K. I. Chang, K.W. Bowyer, and P.J. Flynn. Adaptive rigid multi-region selection for handling expression variation in 3D face recognition. In 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR’05), pages 157–164, 2005.Google Scholar
  26. 26.
    K.I. Chang, K.W. Bowyer, and P.J. Flynn. An evaluation of multi-modal 2D+3D face biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4):619–624, 2005.CrossRefGoogle Scholar
  27. 27.
    C.S. Chua, F. Han, and Y.K. Ho. 3D human face recognition using point signature. In Proc. IEEE Int. Conf. on Automatic Face and Gesture Recognition, pages 233–238, 2000.Google Scholar
  28. 28.
    D. Colbry, G. Stockman, and A.K. Jain. Detection of anchor points for 3D face verification. In Proc. IEEE Workshop on Advanced 3D Imaging for Safety and Security, 2005.Google Scholar
  29. 29.
    A. Colombo, C. Cusano, and R. Schettini. 3D face detection using curvature analysis. Pattern Recognition, 39(3):444–455, 2006.zbMATHCrossRefGoogle Scholar
  30. 30.
    C. Conde, A. Serrano, L.J. Rodríguez-Aragón, and E. Cabello. 3D facial normalization with spin images and influence of range data calculation over face verification. In IEEE Conf. Computer Vision and Pattern Recognition, 2005.Google Scholar
  31. 31.
    J. Cook, V. Chandran, and C. Fookes. 3D face recognition using log-Gabor templates. In Biritish Machine Vision Conference, pages 83–92, 2006.Google Scholar
  32. 32.
    J. Cook, V. Chandran, S. Sridharan, and C. Fookes. Gabor filter bank representation for 3D face recognition. In Proc. Digital Imaging Computing: Techniques and Applications, 2005.Google Scholar
  33. 33.
    D. Cristinacce and T.F. Cootes. Facial feature detection and tracking with automatic template selection. In Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition, pages 429–434, 2006.Google Scholar
  34. 34.
    K. Delac and M. Grgic. Face Recognition. I-Tech Education and Publishing, Vienna, Austria, 2007.Google Scholar
  35. 35.
    H. Dibeklioğlu, A.A. Salah, and L. Akarun. 3D facial landmarking under expression, pose, and occlusion variations. IEEE Second Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS’08), 2008.Google Scholar
  36. 36.
    H.K. Ekenel, H. Gao, and R. Stiefelhagen. 3-D face recognition using local appearance-based models. IEEE Transactions on Information Forensics and Security, 2(3):630–636, 2007.CrossRefGoogle Scholar
  37. 37.
    A.H. Eraslan. 3D universal face-identification technology: Knowledge-based composite-photogrammetry. In Biometrics Consortium, 2004.Google Scholar
  38. 38.
    T. Faltemier, K.W. Bowyer, and P.J. Flynn. 3D face recognition with region committee voting. In Proc. 3DPVT, pages 318–325, 2006.Google Scholar
  39. 39.
    T. Faltemier, K.W. Bowyer, and P.J. Flynn. A region ensemble for 3D face recognition. IEEE Transactions on Information Forensics and Security, 3(1):62–73, 2007.CrossRefGoogle Scholar
  40. 40.
    T. Faltemier, K.W. Bowyer, and P.J. Flynn. Using a multi-instance enrollment representation to improve 3D face recognition. In Proc. of. Biometrics: Theory, Applications, and Systems, (BTAS), pages 1–6, 2007.Google Scholar
  41. 41.
    B. Gökberk and L. Akarun. Comparative analysis of decision-level fusion algorithms for 3D face recognition. In Proc. Int. Conf. on Pattern Recognition, pages 1018–1021, 2006.Google Scholar
  42. 42.
    B. Gökberk, H. Dutağaci, A. Ulacs, L. Akarun, and B. Sankur. Representation plurality and fusion for 3D face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(1):155–173, 2008.CrossRefGoogle Scholar
  43. 43.
    B. Gökberk, M.O. İrfanoğlu, and L. Akarun. 3D shape-based face representation and feature extraction for face recognition. Image and Vision Computing, 24(8):857–869, 2006.CrossRefGoogle Scholar
  44. 44.
    B. Gökberk, A.A. Salah, and L. Akarun. Rank-based decision fusion for 3D shape-based face recognition. In T. Kanade, A. Jain, and N.K. Ratha, editors, Proc. Int. Conf. on Audio- and Video-based Biometric Person Authentication, LNCS, volume 3546, pages 1019–1028, 2005.Google Scholar
  45. 45.
    C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society B, 53(2):285–339, 1991.zbMATHMathSciNetGoogle Scholar
  46. 46.
    R. Herpers and G. Sommer. An attentive processing strategy for the analysis of facial features. Face Recognition: From Theory to Applications, NATO ASI Series F, Springer Verlag, 163:457–468, 1998.Google Scholar
  47. 47.
    T. Heseltine, N. Pears, and J. Austin. Three-dimensional face recognition using combinations of surface feature map subspace components. Image and Vision Computing, 26:382–396, March 2008.CrossRefGoogle Scholar
  48. 48.
    C. Hesher, A. Srivastava, and G. Erlebacher. A novel technique for face recognition using range imaging. In Seventh Int. Symposium on Signal Processing and Its Applications, pages 201–204, 2003.Google Scholar
  49. 49.
    M. Hüsken, M. Brauckmann, S. Gehlen, and C. von der Malsburg. Strategies and benefits of fusion of 2D and 3D face recognition. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005.Google Scholar
  50. 50.
    T. Hutton, B. Buxton, and P. Hammond. Dense surface point distribution models of the human face. In IEEE Workshop on Mathematical Methods in Biomedic Image Analysis, pages 153–160, 2001.Google Scholar
  51. 51.
    M. O. İrfanoğlu, B. Gökberk, and L. Akarun. 3D shape-based face recognition using automatically registered facial surfaces. In Proc. Int. Conf. on Pattern Recognition, volume 4, pages 183–186, 2004.Google Scholar
  52. 52.
    I. A. Kakadiaris, G. Passalis, G. Toderici, M. N. Murtuza, Y. Lu, N. Karampatziakis, and T. Theoharis. Three-dimensional face recognition in the presence of facial expressions: an annotated deformable model approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4):640–649, 2007.CrossRefGoogle Scholar
  53. 53.
    I.A. Kakadiaris, G. Passalis, T. Theoharis, G. Toderici, I. Konstantinidis, and N. Murtuza. Multimodal face recognition: combination of geometry with physiological information. In Proc. Computer Vision and Pattern Recognition Conference, pages 1022–1029, 2005.Google Scholar
  54. 54.
    M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Int. Journal of Computer Vision, 1(4):321–331, 1988.CrossRefGoogle Scholar
  55. 55.
    A. Lanitis, C.J. Taylor, and T.F. Cootes. Toward automatic simulation of aging effects on face images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4):442–455, 2002.CrossRefGoogle Scholar
  56. 56.
    J.C. Lee and E. Milios. Matching range images of human faces. In Int. Conf. on Computer Vision, pages 722–726, 1990.Google Scholar
  57. 57.
    Y. Lee, H. Song, U. Yang, and H. Shin K. Sohn. Local feature based 3D face recognition. In Int. Conf. on Audio- and Video-based Biometric Person Authentication (AVBPA 2005), pages 909–918, 2005.Google Scholar
  58. 58.
    P. Li, B.D. Corner, and S. Paquette. Automatic landmark extraction from three-dimensional head scan data. In Proc. SPIE, volume 4661, page 169. SPIE, 2002.Google Scholar
  59. 59.
    C.T. Liao, Y.K. Wu, and S.H. Lai. Locating facial feature points using support vector machines. In Proc. 9th Int. Workshop on Cellular Neural Networks and Their Applications, pages 296–299, 2005.Google Scholar
  60. 60.
    X. Lu, A. Jain, and D. Colbry. Matching 2.5D face scans to 3D models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1):31–43, 2006.CrossRefGoogle Scholar
  61. 61.
    S. Malassiotis and M.G. Strintzis. Pose and illumination compensation for 3D face recognition. In Proc. Int. Conf. on Image Processing, 2004.Google Scholar
  62. 62.
    Z. Mao, P. Siebert, P. Cockshott, and A. Ayoub. Constructing dense correspondences to analyze 3D facial change. In Int. Conf. on Pattern Recognition, pages 144–148, 2004.Google Scholar
  63. 63.
    T. Maurer, D. Guigonis, I. Maslov, B. Pesenti, A. Tsaregorodtsev, D. West, and G. Medioni. Performance of Geometrix ActiveID 3D face recognition engine on the FRGC data. In Proc. IEEE Workshop Face Recognition Grand Challenge Experiments, 2005.Google Scholar
  64. 64.
    C. McCool, V. Chandran, S. Sridharan, and C. Fookes. 3D face verification using a free-parts approach. Pattern Recogn. Lett. 29(9):1190–1196, 2008.CrossRefGoogle Scholar
  65. 65.
    G. Medioni and R. Waupotitsch. Face recognition and modeling in 3D. In IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, pages 232–233, 2003.Google Scholar
  66. 66.
    K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSDB: The extended M2VTS database. In Proc 2 nd Int. Conf. on Audio and Video-based Biometric Person Authentication, 1999.Google Scholar
  67. 67.
    A.S. Mian, M. Bennamoun, and R. Owens. An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11):1927–1943, 2007.CrossRefGoogle Scholar
  68. 68.
    A.B. Moreno and A. Sanchez. GavabDB: A 3D face database. In Proc. 2nd COST275 Workshop on Biometrics on the Internet, 2004.Google Scholar
  69. 69.
    A.B. Moreno, A. Sanchez, J.F. Velez, and F.J. Diaz. Face recognition using 3D surface-extracted descriptors. In Irish Machine Vision and Image Processing Conf. (IMVIP 2003), 2003.Google Scholar
  70. 70.
    I. Mpiperis, S. Malassiotis, and M.G. Strintzis. 3-D face recognition with the geodesic polar representation. IEEE Transactions on Information Forensics and Security, 2(3 Part 2): 537–547, 2007.CrossRefGoogle Scholar
  71. 71.
    T. Papatheodorou and D. Rueckert. Evaluation of automatic 4D face recognition using surface and texture registration. In Proc. AFGR, pages 321–326, 2004.Google Scholar
  72. 72.
    T. Papatheodorou and D. Rueckert. Evaluation of 3D face recognition using registration and PCA. In AVBPA05, page 997, 2005.Google Scholar
  73. 73.
    D. Petrovska-Delacrétaz, G. Chollet, and B. Dorizzi. Guide to Biometric Reference Systems and Performance Evaluation (in publication). Springer-Verlag, London, 2008.Google Scholar
  74. 74.
    P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, and W. Worek. Preliminary Face Recognition Grand Challenge results. In Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition, pages 15–24, 2006.Google Scholar
  75. 75.
    P.J. Phillips, P.J. Flynn, W.T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W.J. Worek. Overview of the face recognition grand challenge. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, volume 1, pages 947–954, 2005.Google Scholar
  76. 76.
    P.J. Phillips, W.T. Scruggs, A.J. O’Toole, P.J. Flynn, K.W. Bowyer, C.L. Schott, and M. Sharpe. FRVT 2006 and ICE 2006 Large-Scale Results (NISTIR 7408), March 2007.Google Scholar
  77. 77.
    D. Riccio and J.-L. Dugelay. Geometric invariants for 2D/3D face recognition. Pattern Recognition Letters, 28(14):1907–1914, 2007.CrossRefGoogle Scholar
  78. 78.
    D. Riccio and J.L. Dugelay. Asymmetric 3D/2D processing: a novel approach for face recognition. In 13th Int. Conf. on Image Analysis and Processing LNCS, volume 3617, pages 986–993, 2005.Google Scholar
  79. 79.
    T. Russ, C. Boehnen, and T. Peters. 3D face recognition using 3D alignment for PCA. In Proc. of. the IEEE Computer Vision and Pattern Recognition (CVPR06), 2006.Google Scholar
  80. 80.
    T. Russ, M. Koch, and C. Little. A 2D range Hausdorff approach for 3D face recognition. In IEEE Workshop on Face Recognition Grand Challenge Experiments, 2005.Google Scholar
  81. 81.
    A.A. Salah and L. Akarun. 3D facial feature localization for registration. In Proc. Int. Workshop on Multimedia Content Representation, Classification and Security LNCS, volume 4105/2006, pages 338–345, 2006.Google Scholar
  82. 82.
    A.A. Salah, N. Alyüz, and L. Akarun. Registration of three-dimensional face scans with average face models. Journal of Electronic Imaging, 17(1), 2008.Google Scholar
  83. 83.
    A.A. Salah, H. Cinar, L. Akarun, and B. Sankur. Robust facial landmarking for registration. Annals of Telecommunications, 62(1-2):1608–1633, 2007.Google Scholar
  84. 84.
    A. Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, L. Akarun, and B. Sankur. Bosphorus database for 3D face analysis. In First European Workshop on Biometrics and Identity Management Workshop (BioID 2008), 2008.Google Scholar
  85. 85.
    A. Savran, O. Çeliktutan, A. Akyol, J. Trojanova, H. Dibeklioğlu, S. Esenlik, N. Bozkurt, C. Demirkir, E. Akagündüz, K. Çaliskan, N. Alyüz, B. Sankur, İ. Ulusoy, L. Akarun, and T.M. Sezgin. 3D face recognition performance under adversarial conditions. In Proc. eNTERFACE’07 Workshop on Multimodal Interfaces, 2007.Google Scholar
  86. 86.
    A. Scheenstra, A. Ruifrok, and R.C. Veltkamp. A survey of 3D face recognition methods. In Proc. Int. Conf. on Audio and Video-Based Biometric Person Authentication (AVBPA). Springer, 2005.Google Scholar
  87. 87.
    R. Senaratne and S. Halgamuge. Optimised landmark model matching for face recognition. In Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition, pages 120–125, 2006.Google Scholar
  88. 88.
    M. Soo-Bae, A. Razdan, and G. Farin. Automated 3D face authentication and recognition. In IEEE Int. Conf. on Advanced Video and Signal based Surveillance, 2007.Google Scholar
  89. 89.
    H.T. Tanaka, M. Ikeda, and H. Chiaki. Curvature-based face surface recognition using spherical correlation principal directions for curved object recognition. In Third Int. Conf. on Automated Face and Gesture Recognition, pages 372–377, 1998.Google Scholar
  90. 90.
    J.R. Tena, M. Hamouz, A.Hilton, and J. Illingworth. A validated method for dense non-rigid 3D face registration. In Int. Conf. on Video and Signal Based Surveillance, pages 81–81, 2006.Google Scholar
  91. 91.
    F. Tsalakanidou, S. Malassiotis, and M. Strinzis. Integration of 2D and 3D images for enhanced face authentication. In Proc. AFGR, pages 266–271, 2004.Google Scholar
  92. 92.
    F. Tsalakanidou, D. Tzovaras, and M. Strinzis. Use of depth and colour eigenfaces for face recognition. Pattern Recognition Letters, 24:1427–1435, 2003.zbMATHCrossRefGoogle Scholar
  93. 93.
    University of Notre Dame (UND) Face Database. http://www.nd.edu/ cvrl/.
  94. 94.
    Y. Wang and C.-S. Chua. Face recognition from 2D and 3D images using 3D Gabor filters. Image and Vision Computing, 23(11):1018–1028, 2005.CrossRefGoogle Scholar
  95. 95.
    Y. Wang and C.S. Chua. Robust face recognition from 2D and 3D images using structural Hausdorff distance. Image and Vision Computing, 24(2):176–185, 2006.CrossRefGoogle Scholar
  96. 96.
    Y. Wang, G. Pan, Z. Wu, and S. Han. Sphere-spin-image: A viewpoint-invariant surface representation for 3D face recognition. In ICCS, LNCS 3037, pages 427–434, 2004.Google Scholar
  97. 97.
    B. Weyrauch, J. Huang, B. Heisele, and V. Blanz. Component-based face recognition with 3D morphable models. In Proc. First IEEE Workshop on Face Processing in Video, 2004.Google Scholar
  98. 98.
    L. Wiskott, J.-M Fellous, N. Krüger, and C. von der Malsburg. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):775–779, 1997.CrossRefGoogle Scholar
  99. 99.
    K. Wong, K. Lam, and W. Siu. An efficient algorithm for human face detection and facial feature extraction under different conditions. Pattern Recognition, 34:1993–2004, 2001.zbMATHCrossRefGoogle Scholar
  100. 100.
    Z. Wu, Y. Wang, and G. Pan. 3D face recognition using local shape map. In Processings of the Int. Conf. on Image Processing, pages 2003–2006, 2004.Google Scholar
  101. 101.
    C. Xu, T. Tan, Y. Wang, and L. Quan. Combining local features for robust nose location in 3D facial data. Pattern Recognition Letters, 27(13):1487–1494, 2006.CrossRefGoogle Scholar
  102. 102.
    Y. Yan and K. Challapali. A system for the automatic extraction of 3-d facial feature points for face model calibration. In Proc. Int. Conf. on Image Processing, volume 2, pages 223–226, 2000.Google Scholar
  103. 103.
    L. Yin, X. Wei, Y. Sun, J. Wang, and M.J. Rosato. A 3D facial expression database for facial behavior research. In Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition, pages 211–216, 2006.Google Scholar
  104. 104.
    L. Zhang, A. Razdan, G. Farin, J. Femiani, M. Bae, and C. Lockwood. 3D face authentication and recognition based on bilateral symmetry analysis. The Visual Computer, 22(1):43–55, 2006.zbMATHCrossRefGoogle Scholar
  105. 105.
    C. Zhong, Z. Sun, and T. Tan. Robust 3D face recognition using learned visual codebook. In Proc. Computer Vision and Pattern Recognition, pages 1–6, 2007.Google Scholar
  106. 106.
    C. Zhong, T. Tan, C. Xu, and J. Li. Automatic 3D face recognition using discriminant common vectors. In Proc. Int. Conf. on Biometrics, volume 3832, pages 85–91, 2006.Google Scholar
  107. 107.
    S.C. Le Zou, Z. Xiong, M. Lu, and K.R. Castleman. 3-D face recognition based on warped example faces. IEEE Transactions on Information Forensics and Security, 2(3):513–528, Sept. 2007.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Berk Gökberk
    • 1
    Email author
  • Albert Ali Salah
    • 2
  • Neşe Alyüz
    • 3
  • Lale Akarun
    • 4
  1. 1.Department of Electrical EngineeringMathematics and Computer Science, University of TwenteEnschedeThe Netherlands
  2. 2.Center for Mathematics and Computer Science (CWI)AmsterdamThe Netherlands
  3. 3.Computer Engineering Department of BebekBoğaziçi UniversityIstanbulTurkey
  4. 4.Computer Engineering Department of BebekBoğaziçi UniversityIstanbulTurkey

Personalised recommendations