Strain Tensor Elastography: 2D and 3D Visualizations

  • Darío Sosa-CabreraEmail author
  • Karl Krissian
  • Javier González-Fernández
  • Luis Gómez-Déniz
  • Eduardo Rovaris
  • Carlos Castaño-Moraga
  • Juan Ruiz-Alzola
Part of the Advances in Pattern Recognition book series (ACVPR)


Elastography measures the elastic properties of soft tissues using principally ultrasound (US) or magnetic resonance (MR) signals. The elastic behavior of tissues can be analyzed with tensor signal processing. Different approaches have been developed to estimate and image the elastic properties in the tissue. In ultrasound elastography, the estimation of the displacement and strain fields is mostly based on measures computed from the Radio Frequency signals, such as time-domain cross-correlation. We propose to estimate the displacement field from two consecutive B-mode images using a multiscale optical flow method. The tensor strain field can then be plotted as ellipsoids, visualizing in a single image the standard scalar parameters that are usually represented separately. This technique can offer physicians the possibility of extracting new discriminant and useful parameters related to the elastic behavior of tissues. Although clinical validation is still needed, our experiments from finite element and ultrasound simulations display consistent and reliable results.


Axial Strain Strain Tensor Diffusion Tensor Magnetic Resonance Imaging Ultrasound Elastography Elasticity Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.K. Alam, F.L. Lizzi, T. Varghese, E.J. Feleppa, and S. Ramachandran. Adaptive spectral strain estimators for elastography. Ultrasound Imaging, 26(3):131–149, July 2004.Google Scholar
  2. 2.
    S.K. Alam, J. Ophir, and E.E. Konofagou. An adaptive strain estimator for elastography. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 45:461–472, 1998.CrossRefGoogle Scholar
  3. 3.
    I. Céspedes, Y. Huang, J. Ophir, and S. Spratt. Methods for estimation of subsample time delays of digitized echo signals. Ultrason Imaging, 17(2):142–71, April 1995.CrossRefGoogle Scholar
  4. 4.
    I. Céspedes and J. Ophir. Reduction of image noise in elastography. Ultrasound Imaging, 15:89–102, 1993.CrossRefGoogle Scholar
  5. 5.
    E.J. Chen, J. Novakofski, W.K. Jenkins, and W.D. Jr. O’Brien. Young’s modulus measurements of soft tissues with application to elasticity imaging. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 43(1):191–194, Jan 1996.CrossRefGoogle Scholar
  6. 6.
    R.J. Dickinson and C.R. Hill. Measurement of soft tissue motion using correlation between a-scans. Ultrasound in Medicine and Biology, 8:263–271, 1982.CrossRefGoogle Scholar
  7. 7.
    M. Dighe, Unmin Bae, Michael L Richardson, Theodore J Dubinsky, Satoshi Minoshima, and Yongmin Kim. Differential diagnosis of thyroid nodules with us elastography using carotid artery pulsation. Radiology, 248(2):662–9, August 2008.CrossRefGoogle Scholar
  8. 8.
    B.S. Garra, I. Céspedes, J. Ophir, S. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen. Elastography of breast lesions: initial clinical results. Radiology, 202:79–86, 1997.Google Scholar
  9. 9.
    T.J. Hall, Y. Zhu, and C.S. Spalding. In vivo real-time freehand palpation imaging. Ultrasound in Medicine and Biology, 29(3):427–35, March 2003.CrossRefGoogle Scholar
  10. 10.
    M. Horsfield and D. Jones. Applications of diffusion-weighted and diffusion tensor mri to white matter diseases–a review. NMR Biomed., 15(7–8):570–577, 2002.CrossRefGoogle Scholar
  11. 11.
    K. Hoyt, F. Forsberg, and J Ophir. Analysis of hybrid spectral strain estimation technique in elastography. Physics in Medicine and Biology, Institute of Physics Publishing, 5:197–209, 2006.CrossRefGoogle Scholar
  12. 12.
    Jorgen Arendt Jensen. Field: A program for simulating ultrasound systems. In 10th Nordic-Baltic Conference on Biomedical Imaging, pages 351–353, 1996.Google Scholar
  13. 13.
    E.E. Konofagou, T. Harrigan, and J. Ophir. Shear strain estimation and lesion mobility assessment in elastography. Ultrasonics, 38:400–404, 2000.CrossRefGoogle Scholar
  14. 14.
    E.E. Konofagou and J. Ophir. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and poisson’s ratios in tissues. Ultrasound in Medicine and Biology, 24(8):1183–1199, 1998.CrossRefGoogle Scholar
  15. 15.
    Karl Krissian. Amilab interpreted language for image processing.
  16. 16.
    G. Lan, S.K. Alam, and K.J. Parker. A new vibration theory for sonoelasticity imaging. In Ultrasonics Symposium, 2:879–882, 1993.Google Scholar
  17. 17.
    A. Lorenz, A. Pesavento, M. Pesavento, and H. Ermert. Three-dimensional strain imaging and related strain artifacts using an ultrasonic 3d abdominal probe. Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE, 2:1657–1660, 1999.Google Scholar
  18. 18.
    L.E. Malvern. Introduction to the Mechanics of a Continuous Medium. Ed. Prentice Hall, 1969.Google Scholar
  19. 19.
    R.L. Maurice, M. Daronat, J. Ohayon, E. Stoyanova1, F.S. Foster, and G. Cloutier. Non-invasive high-frequency vascular ultrasound elastography. Phys. Med. Biol., 50:1611–1628, 2005.Google Scholar
  20. 20.
    K.R. Nightingale and M.L. Palmeri. Elasticity imaging: Dynamic approaches, 2007. tutorial in IEEE Ultrasonics Symposium, New York, NY, USA.Google Scholar
  21. 21.
    J. Ophir, S.K. Alam, B. Garra, F. Kallel, E.E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, and R. Souchon. Elastography: Imaging the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics, 29:155–171, 2002.CrossRefGoogle Scholar
  22. 22.
    J. Ophir, S.K. Alam, B.S. Garra, F. Kallel, E. E. Konofagou, T. A. Krouskop, and T. Varghese. Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues. Journal of Engineering in Medicine, 213:203–233, 1999.CrossRefGoogle Scholar
  23. 23.
    Federico París. Teoría de la Elasticidad. Escuela Técnica Superior de Ingenieros Industriales de Sevilla, 1996.Google Scholar
  24. 24.
    K.J. Parker, S.R. Huang, R.A. Musulin, and R.M. Lerner. Tissue response to mechanical vibrations for sonoelasticity imaging. Ultrasound in Medicine and Biology, 16:241–246, 1990.CrossRefGoogle Scholar
  25. 25.
    A. Pesavento and A. Lorenz. Real time strain imaging–a new ultrasonic method for cancer detection: First study results. In IEEE Ultrasonics Symposium, 2:1647–1652, 2001.Google Scholar
  26. 26.
    A. Pesavento, A. Lorenz, and H. Ermert. Phase root seeking and the Cramer-Rao-lower bound for strain estimation. Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE, 2:1669–1672, 1999.Google Scholar
  27. 27.
    A. Pesavento, C. Perrey, M. Krueger, and H. Ermert. A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46(5):1057–1067, September 1999.CrossRefGoogle Scholar
  28. 28.
    M. A. Rodríguez-Florido. Procesado Anisótropo de Campos Tensoriales Multidimensionales y sus Aplicaciones al Filtrado y Segmentación de Imágenes Médicas. Phd dissertation, University of Las Palmas de GC, 2004.Google Scholar
  29. 29.
    M.A. Rodríguez-Florido, C.-F. Westin, and J. Ruiz-Alzola. DT-MRI regularization using anisotroipic tensor field filtering. IEEE International Symposium on Biomedical Imaging, pages 15–18, April 2004.Google Scholar
  30. 30.
    P. Selskog, E. Heiberg, T. Ebbers, L. Wigstrom, and M. Karlsson. Kinematics of the heart: strain-rate imaging from time-resolved three-dimensional phase contrast mri. IEEE Trans Med Imaging, 21(9):1105–1109, 2002.CrossRefGoogle Scholar
  31. 31.
    D. Sosa-Cabrera. Novel Processing Schemes and Visualization Methods for Elasticity Imaging. Phd dissertation, University of Las Palmas de GC, 2008.Google Scholar
  32. 32.
    D. Sosa-Cabrera, J. González-Fernández, C. Castaño-Moraga, L. Gómez-Déniz, L. Álvarez-León, and J. Ruiz-Alzola. A multiscale variational optical flow method to estimate discontinuous motion fields for ultrasound elastography. In Proceedings of Fifth the International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity, 5:31, 2006.Google Scholar
  33. 33.
    D. Sosa-Cabrera, J. González-Fernández, L. Gómez-Deniz, and J. Ruiz-Alzola. Characterization of a multiscale variational optical flow method for elastography. In Proceedings of the IEEE Ultrasonics International Symposium, 2007.Google Scholar
  34. 34.
    S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir. Analysis of an adaptive strain estimation technique in elastography. Ultrasonic Imaging, 24:109–118, 2002.Google Scholar
  35. 35.
    Mickaël Tanter, Jeremy Bercoff, Laurent Sandrin, and Mathias Fink. Ultrafast compound imaging for 2-d motion vector estimation: application to transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control, 49(10):1363–74, October 2002.CrossRefGoogle Scholar
  36. 36.
    T. Varghese, E. E. Konofagou, J. Ophir, S.K. Alam, and M. Bilgen. Direct strain estimation in elastography using spectral cross-correlation. Ultrasound in Medicine and Biology, 26(9):1525–1537, 2000.CrossRefGoogle Scholar
  37. 37.
    F. Viola and W.F. Walker. A comparison of the performance of time-delay estimators in medical ultrasound. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 50(4):392–401, April 2003.CrossRefGoogle Scholar
  38. 38.
    C.F. Westin, S.E. Maier, H. Mamata, A. Nabavi, F.A. Jolesz, and R. Kikinis. Processing and visualization for diffusion tensor mri. Medical Image Analysis, 6:93–108, 2002.CrossRefGoogle Scholar
  39. 39.
    C.F. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, and F. Jolesz. Geometrical diffusion measures for mri from tensor basis analysis. 1997.Google Scholar
  40. 40.
    Reza Zahiri-Azar and Septimiu E Salcudean. Motion estimation in ultrasound images using time domain cross correlation with prior estimates. IEEE Trans Biomed Eng, 53(10):1990–2000, October 2006.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Darío Sosa-Cabrera
    • 1
    Email author
  • Karl Krissian
    • 1
  • Javier González-Fernández
    • 1
  • Luis Gómez-Déniz
    • 1
  • Eduardo Rovaris
    • 1
  • Carlos Castaño-Moraga
    • 1
  • Juan Ruiz-Alzola
    • 1
  1. 1.Center for Technology in Medicine, Dept. Señales y ComunicacionesUniversity of Las Palmas de Gran CanariaSPAIN

Personalised recommendations