A Software Platform for Research in Computational Evolutionary Biology
  • Charles Ofria
  • David M. Bryson
  • Claus O. Wilke

Avida1 is a software platform for experiments with self-replicating and evolving computer programs. It provides detailed control over experimental settings and protocols, a large array of measurement tools, and sophisticated methods to analyze and post-process experimental data. This chapter explains the general principles on which Avida is built, its main components and their interactions, and gives an overview of some prior research.


Virtual Machine Test Environment Replication Rate Central Processing Unit High Mutation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Avida project. URL
  3. 3.
    Adami, C.: Digital genetics: unravelling the genetic basis of evolution. Nature Reviews Genetics 7(2), 109–118 (2006). DOI 10.1038/nrg1771CrossRefMathSciNetGoogle Scholar
  4. 4.
    Adami, C., Brown, C.T., Haggerty, M.R.: Abundance-distributions in artificial life and stochastic models: Age and area revisited. In: F. Morán, A. Moreno, J.J. Morelo, P. Chacón (eds.) Proceedings of the Third European Conference on Advances in Artificial Life, Lecture Notes in Computer Science, pp. 503–514. Springer-Verlag, London, UK (1995)Google Scholar
  5. 5.
    Adami, C., Ofria, C., Collier, T.C.: Evolution of biological complexity. Proceedings of the National Academy of Sciences 97, 4463–4468 (2000)CrossRefGoogle Scholar
  6. 6.
    Barton, N., Zuidema, W.: Evolution: the erratic path towards complexity. Current Biology 13(16), R649–R651 (2003)CrossRefGoogle Scholar
  7. 7.
    Chow, S.S., Wilke, C.O., Ofria, C., Lenski, R.E., Adami, C.: Adaptive radiation from resource competition in digital organisms. Science 305(5680), 84–86 (2004). DOI 10.1126/science.1096307CrossRefGoogle Scholar
  8. 8.
    Chu, J., Adami, C.: Propagation of information in populations of self-replicating code. In: C.G. Langton, T. Shimohara (eds.) Artificial Life V: Proceedings of the Fifth International Workshop on the Synthesis and Simulation of Living Systems, pp. 462–469. International Society of Artificial Life, MIT Press, Cambridge, MA (1997)Google Scholar
  9. 9.
    Comas, I., Moya, A., Gonzalez-Candelas, F.: Validating viral quasispecies with digital organisms: A re-examination of the critical mutation rate. BMC Evolutionary Biology 5(1), 5 (2005). DOI 10.1186/1471-2148-5-5CrossRefGoogle Scholar
  10. 10.
    Cooper, T.F., Ofria, C: Evolution of stable ecosystems in populations of digital organisms. In: R.K. Standish, M.A. Bedau, H.A. Abbass (eds.) Artificial Life VIII: Proceedings of the Eighth International Conference on Artificial life, pp. 227–232. International Society of Artificial Life, MIT Press, Cambridge, MA (2003)Google Scholar
  11. 11.
    Darwin, C: On the Origin of Species by Means of Natural Selection. Murray, London (1859)Google Scholar
  12. 12.
    Dawkins, R.: The Blind Watchmaker, 2nd edn. W. W. Norton & Company, New York (1996)Google Scholar
  13. 13.
    Dennett, D.C.: The new replicators. In: M. Pagel (ed.) Encyclopedia of Evolution. Oxford University Press, Oxford (2002)Google Scholar
  14. 14.
    Dewdney, A.K.: In a game called core war hostile programs engage in a battle of bits. Scientific American 250(5), 14–22 (1984)CrossRefGoogle Scholar
  15. 15.
    Domingo, E., Beibricher, C.K., Eigen, M., Holland, J.J.: Quasispecies and RNA Virus Evolution: Priciples and Consequences. Landes Bioscience, Georgetown, TX (2001)Google Scholar
  16. 16.
    Drake, J.W., Holland, J.J.: Mutation rates among rna viruses. Proceedings of the National Academy of Sciences 96(24), 13,910–13,913 (1999). DOI 10.1073/pnas.96.24. 13910CrossRefGoogle Scholar
  17. 17.
    Egri-Nagy, A., Nehaniv, C.L.: Evolvability of the genotype-phenotype relation in populations of self-replicating digital organisms in a tierra-like system. In: Proceedings of the 7th European Conferance on Artificial Life, Lecture Notes in Computer Science, pp. 238–247. Springer, Berlin (2003)Google Scholar
  18. 18.
    Elena, S.F., Lenski, R.E.: Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews Genetics 4(6), 457–469 (2003). DOI 10.1038/nrg1088CrossRefGoogle Scholar
  19. 19.
    Gerlee, P., Lundh, T.: The genetic coding style of digital organisms. In: Proceedings of the 8th European Conference on Artificial Life, Lecture Notes in Computer Science, vol. 3630, pp. 854–863. Springer, Berlin (2005). DOI 10.1007/11553090.86Google Scholar
  20. 20.
    Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  21. 21.
    Hartl, D.L., Clark, A.G.: Principles of Population Genetics. Sinauer Associates, Sunderland, MA (2006)Google Scholar
  22. 22.
    Kim, Y., Stephan, W.: Selective sweeps in the presence of interference among partially linked loci. Genetics 164(1), 389–398 (2003)Google Scholar
  23. 23.
    Koza, J.R.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Norwell, MA (2003)zbMATHGoogle Scholar
  24. 24.
    Lenski, R., Ofria, C, Pennock, R.T., Adami, C: The evolutionary origin of complex features. Nature 423, 139–144 (2003)CrossRefGoogle Scholar
  25. 25.
    Lenski, R.E.: Phenotypic and genomic evolution during a 20,000-generation experiment with the bacterium, Escherichia coli. Plant Breeding Reviews 24, 225–265 (2004)MathSciNetGoogle Scholar
  26. 26.
    Lenski, R.E., Ofria, C, Collier, T.C., Adami, C: Genome complexity, robustness and genetic interactions in digital organisms. Nature 400(6745), 661–664 (1999). DOI 10.1038/23245CrossRefGoogle Scholar
  27. 27.
    Maynard Smith, J.: Byte-sized evolution. Nature 355, 772–773 (1992). DOI 10.1038/355772a0CrossRefGoogle Scholar
  28. 28.
    McVean, G.A.T., Charlesworth, B.: The effects of hill-robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics 155(2), 929–944 (2000)Google Scholar
  29. 29.
    Misevic, D., Ofria, C, Lenski, R.E.: Sexual reproduction shapes the genetic architecture of digital organisms. Proceedings of the Royal Society of London: Biological Sciences 273, 457–464 (2006)CrossRefGoogle Scholar
  30. 30.
    Morin, P.J.: Biodiversity's ups and downs. Nature 406(6795), 463–464 (2000)CrossRefGoogle Scholar
  31. 31.
    Newcomb, R.D., Campbell, P.M., Ollis, D.L., Cheah, E., Russell, R.J., Oakeshott, J.G.: A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National Academy of Sciences 94(14), 7464–7468 (1997). DOI 10.1073/pnas.94.14.7464CrossRefGoogle Scholar
  32. 32.
    Nilsson, D.E., Pelger, S.: A pessimistic estimate of the time required for an eye to evolve. Proceedings of the Royal Society of London: Biological Sciences 256(1345), 53–58 (1994)CrossRefGoogle Scholar
  33. 33.
    Notley-McRobb, L., Ferenci, T.: Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environmental Microbiology 1(1), 33–43 (1999). DOI 10.1046/j.1462-2920.1999.00002.xCrossRefGoogle Scholar
  34. 34.
    Notley-McRobb, L., Ferenci, T.: The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environmental Microbiology 1(1), 45–52 (1999). DOI 10.1046/j.1462-2920.1999. 00003.xCrossRefGoogle Scholar
  35. 35.
    Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Belknap Press of Harvard University Press, Cambridge, MA (2006)zbMATHGoogle Scholar
  36. 36.
    Ofria, C., Adami, C., Collier, T.: Design of evolvable computer languages. IEEE Transactions on Evolutionary Computation 6(4), 420–424 (2002). DOI 10.1109/TEVC.2002.802442CrossRefGoogle Scholar
  37. 37.
    Ofria, C., Bryson, D.M., Baer, B., Nanlohy, K.G., Lenski, R.E., Adami, C.: The Avida User's Guide. Michigan State University, East Lansing, MI (2008)Google Scholar
  38. 38.
    Ofria, C., Wilke, C.: Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229 (2004). DOI 10.1162/106454604773563612CrossRefGoogle Scholar
  39. 39.
    O'Neill, B.: Digital evolution. PLoS Biology 1(1), 011–014 (2003). DOI 10.1371/journal.pbio.0000018CrossRefGoogle Scholar
  40. 40.
    Orr, H.A.: The rate of adaptation in asexuals. Genetics 155(2), 961–968 (2000)Google Scholar
  41. 41.
    Pennock, R.T.: Avida-ED website. URL
  42. 42.
    Rainey, P.B., Travisano, M.: Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998). DOI 10.1038/27900CrossRefGoogle Scholar
  43. 43.
    Rasmussen, S., Knudsen, C., Feldberg, P., Hindsholm, M.: The coreworld: Emergence and evolution of cooperative structures in a computational chemistry. Physica D 42(1–3), 111–134 (1990). DOI 10.1016/0167-2789(90)90070-6CrossRefGoogle Scholar
  44. 44.
    Ray, T.S.: An approach to the synthesis of life. In: C.G. Langton, C. Taylor, J.D. Farmer, S. Rasmussen (eds.) Artificial Life II, vol. XI, pp. 371–408. Addison-Wesley, Redwood City, CA (1991)Google Scholar
  45. 45.
    Schluter, D.: Ecological causes of adaptive radiation. American Naturalist 148, S40–S64 (1996)CrossRefGoogle Scholar
  46. 46.
    Schluter, D.: Ecology and the origin of species. Trends in Ecology & Evolution 16(7), 372–380 (2001)CrossRefGoogle Scholar
  47. 47.
    Tilman, D.: Resource Competition and Community Structure. Princeton University Press, Princeton, NJ (1982)Google Scholar
  48. 48.
    Tilman, D.: Causes, consequences and ethics of biodiversity. Nature 405(6783), 208–211 (2000)CrossRefGoogle Scholar
  49. 49.
    Travisano, M., Rainey, P.B.: Studies of adaptive radiation using model microbial systems. The American Naturalist 156, S35–S44 (2000). DOI 10.1086/303414CrossRefGoogle Scholar
  50. 50.
    Wilke, C.O.: Maternal effects in molecular evolution. Physical Review Letters 88(7), 078,101 (2002). DOI 10.1103/PhysRevLett.88.078101CrossRefGoogle Scholar
  51. 51.
    Wilke, C.O., Adami, C.: The biology of digital organisms. Trends in Ecology & Evolution 17(11), 528–532 (2002). DOI 10.1016/S0169-5347(02)02612-5CrossRefGoogle Scholar
  52. 52.
    Wilke, C.O., Adami, C.: Evolution of mutational robustness. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 522(1–2), 3–11 (2003)CrossRefGoogle Scholar
  53. 53.
    Wilke, C.O., Wang, J.L., Ofria, C., Lenski, R.E., Adami, C.: Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412(6844), 331–333 (2001). DOI 10.1038/35085569CrossRefGoogle Scholar
  54. 54.
    Wilkins, A.S.: The Evolution of Developmental Pathways. Sinauer Associates, Sun-derland, MA (2002)Google Scholar
  55. 55.
    Yedid, G., Bell, G.: Microevolution in an electronic microcosm. The American Naturalist 157(5), 465–487 (2001). DOI 10.1086/319928CrossRefGoogle Scholar
  56. 56.
    Yedid, G., Bell, G.: Macroevolution simulated with autonomously replicating computer programs. Nature 420(6917), 810–812 (2002). DOI 10.1038/nature01151CrossRefGoogle Scholar
  57. 57.
    Zhang, H., Travisano, M.: Predicting fitness effects of beneficial mutations in digital organisms. Artificial Life, 2007. ALIFE ′07. IEEE Symposium on pp. 39–46 (2007). DOI 10.1109/ALIFE.2007.367656Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Charles Ofria
    • 1
  • David M. Bryson
    • 1
  • Claus O. Wilke
    • 2
  1. 1.Department of Computer Science and EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Center for Computational Biology and BioinformaticsUniversity of Texas at AustinAustinUSA

Personalised recommendations