Optical Packet Switching

  • Carla Raffaelli
  • Slavisa Aleksic
  • Franco Callegati
  • Walter Cerroni
  • Guido Maier
  • Achille Pattavina
  • Michele Savi
Chapter

Abstract

This chapter provides an outline of the main concepts and issues related to optical packet switching (OPS). The basic network functions required by this paradigm are discussed and references to past and current research on the topic are provided. Optical packet switching is a transport technique that assumes information to be organized in packets formed by a payload and a header both encoded as optical signals. The payload is transferred through the network without any optical to electronic conversion. The header is processed in the early phase in the electronic domain. Optical packet switching may be considered as a long-term and more flexible alternative to the circuit-switched optical networks currently being deployed by operators. This innovative paradigm aims at optimizing the utilization of the dense wavelength division multiplexing (DWDM) channels by means of fast and highly dynamic resource allocation, overcoming the inefficiency typical of the circuit transfer modes. Traditionally, packet transfer modes have proved to be very flexible by nature, with respect to bandwidth exploitation. In fact, link capacity is shared in time by means of statistical multiplexing, while contentions occurring at each node are solved by storing packets as long as the required resources become available again. Therefore, network links are in general used more efficiently in OPS than in circuit-switching.

References

  1. 3.
    Agrawal, G.P. (1992). Fiber-optic communication systems. Series in Microwave and Optical Engineering. Wiley McGraw-Hill, New York.Google Scholar
  2. 4.
    Al-Zaharani, F.A., Habiballa, A., Fayoumi, A.G., et al. (2005). Performance tradeoffs of shared limited range wavelength conversion schemes in optical WDM networks. In: Proceedings of Second IFIP International Conference on Wireless and Optical Communications Networks. pp. 18–22.Google Scholar
  3. 5.
    Aleksić, S. and Krajinović, V. (2002). Comparison of optical code correlators for all-optical MPLS networks. In: 28th European Conference on Optical Communication (ECOC 2002). Copenhagen, Denmark.Google Scholar
  4. 6.
    Almeida, R., Pelegrini, J., and Waldman, H. (2005). A generic-traffic optical buffer modeling for asynchronous optical switching networks. IEEE Communications Letters 9(2), 175–177.CrossRefGoogle Scholar
  5. 14.
    Bergman, L., Morookian, J., and Yeh, C. (1998). An all-optical long distance multi-Gbytes/s bit-parallel WDM single-fibre link. IEEE Journal of Lightwave Technology 16(9), 1577–1582.CrossRefGoogle Scholar
  6. 15.
    Bergman, L., Morookian, J., and Yeh, C. (2000). Advances in multi-channel optical multi-Gbytes/sec bit-parallel WDM single fiber link. In: IEEE 50th Electronic Components and Technology Conference. Las Vegas, Nevada, USA, pp. 1504–1510.Google Scholar
  7. 19.
    Blumenthal, D., Prucnal, P., and Sauer, J. (1994). Photonic packet switches: Architectures and experimental implementations. In: Proceedings of the IEEE 82, 1650–1667.CrossRefGoogle Scholar
  8. 22.
    Callegati, F. (2000). Optical buffers for variable length packets. IEEE Communications Letters 4(9), 292–294.CrossRefGoogle Scholar
  9. 24.
    Callegati, F., Cankaya, H., Xiong, Y., et al. (1999). Design issues of optical IP routers for internet backbone applications. IEEE Communications Magazine 37(12), 124–128.CrossRefGoogle Scholar
  10. 25.
    Callegati, F., Careglio, D., Cerroni, W., et al. (2005). Keeping the packet sequence in optical packet-switched networks. Optical Switching and Networking 2, 137–147. DOI 10.1016/j.osn.2005.09.001.CrossRefGoogle Scholar
  11. 26.
    Callegati, F., Casoni. M., Raffaelli, C., et al. (1999). Packet optical networks for high speed TCP-IP backbones. IEEE Communications Magazine 37(1), 124–129.CrossRefGoogle Scholar
  12. 27.
    Callegati, F. and Cerroni, W. (2002). Time-wavelength exploitation in optical feedback buffer with trains of packets. In: N. Ghani, K.M. Sivalingam (eds.) Optical Networking and Communications (Opticomm 2002), vol. 4874, pp. 274–285. SPIE. DOI 10.1117/12.475304.Google Scholar
  13. 28.
    Callegati, F., Cerroni, W., Bonani, L.H., et al. (2006). Congestion resolution in optical burst/packet switching with limited wavelength conversion. In: IEEE Global Telecommunications Conference (GLOBECOM ’00), p. 5. IEEE, San Francisco, CA, USA. DOI 10.1109/GLOCOM.2006.393.Google Scholar
  14. 29.
    Callegati, F., Cerroni, W., Raffaelli, C., et al. (2004). Wavelength and time domains exploitation for QoS management in optical packet switches. Computer Networks 44(4), 569–582. DOI 10.1016/j.comnet.2003.12.010. Special Issue on QoS in Multiservice IP Networks.CrossRefGoogle Scholar
  15. 30.
    Callegati, F., Corazza, G., and Raffaelli, C. (2002). Exploitation of DWDM for optical packet switching with quality of service guarantees. IEEE Journal on Selected Areas in Communications 20(1), 190–201.CrossRefGoogle Scholar
  16. 34.
    Chao, H.J. (2002). Next generation routers. In: Proceedings of the IEEE 90, 1518–1558.CrossRefGoogle Scholar
  17. 35.
    Chen, L.R. and Smith, P.W.E. (2000). Demonstration of incoherent wavelength-encoding/time-spreading optical CDMA using Chirped Moire gratings. IEEE Photonics Technology Letters 12(9), 1281–1283.CrossRefGoogle Scholar
  18. 36.
    Cheyns, Y., Van Breusegem, E., Develder, C., et al. (2004). Evaluating cost functions for OPS node architectures. In: Proceedings of 8th Working Conference on Optical Network Design and Modeling (ONDM).Google Scholar
  19. 44.
    Cotter, D., Lucek, J.K., Shabeer, M., et al. (1995). Self-routing of 100 Gbit/s packets using 6 bit “keyword” address recognition. IEE Electronics Letters 31(17), 1475–1476.CrossRefGoogle Scholar
  20. 46.
    Danielsen, S.L., Hansen, P.B., and Stubkjaer, K. (1998). Wavelength conversion in optical packet switching. IEEE/OSA Journal Lightwave Technology 16(9), 2095–2108.CrossRefGoogle Scholar
  21. 48.
    Dittmann, L. et al. (2003). The European IST project DAVID: A viable approach towards optical packet switching. IEEE Journal on Selected Areas in Communications 21(7), 1026–1040.CrossRefGoogle Scholar
  22. 51.
    Dorgeuille, F., Mersali, B., Feuillade M., et al. (1996). InP-switch matrix based on laser-amplifier gates. SPIE Optical Networks Magazine 8, 1178–1180.Google Scholar
  23. 55.
    Eckberg, A.E. and Hou, T.C. (1988). Effects of output buffer sharing on buffer requirements in an ATDM packet switching. In: Proceedings of INFOCOM. Networks: Evolution or Revolution? Seventh Annual Joint Conference of the IEEE Computer and Communcations Societies, pp. 459–466.Google Scholar
  24. 57.
    El-Bawab, T.S. and Shin, J. (2002). Optical packet switching in core networks: Between vision and reality. IEEE Communications Magazine 40(9), 60–65.CrossRefGoogle Scholar
  25. 60.
    Eramo, V., Listanti, M., and Pacifici, G. (2003). A comparison study on the number of wavelength converters needed in synchronous and asynchronous all-optical switching architectures. IEEE/OSA Journal of Lightwave Technology 21(2), 340–355.CrossRefGoogle Scholar
  26. 61.
    Eramo, V., Listanti, M., and Spaziani, M. (2005). Resource sharing in optical packet switches with limited-range wavelength converters. IEEE/OSA Journal Lightwave Technology 23(2), 2095–2108.Google Scholar
  27. 62.
    Eramo, V., Raffaelli, A.G.C., and Savi, M. (2008). Performance analysis of multi-fiber all-optical switches employing fixed-input/tunable-output wavelength converters. In: Proceedings of IT-NEWS (QoS-IP), 4th International Telecommunication Network WorkShop on QoS Multiservice IP Networks.Google Scholar
  28. 64.
    Fathallah, H., Rusch, L.A., and LaRochelle, S. (1999). Passive optical frequency-hop CDMA communication system. IEEE Journal of Lightwave Technology 17(3), 397–405.CrossRefGoogle Scholar
  29. 68.
    Muretto, G. and Raffaelli, C. (2007). Combining contention resolution schemes in WDM optical packet switches with multifiber interfaces. OSA Journal of Optical Networking, 6(1), 74–89.CrossRefGoogle Scholar
  30. 77.
    Glesk, I., Solokoff, J.P., and Prucnal, P.R. (1994). All-Optical address recognition and self-routing in a 250 Gbit/s packet-switched network. IEE Electronics Letters 30(16), 1322–1323.CrossRefGoogle Scholar
  31. 78.
    Gowda, S., Shenai, R.K., Sivalingam, K.M., Cankaya, H.C. (2003). Performance evaluation of TCP over optical burst-switched (OBS) WDM networks. In: Proceedings of IEEE International Conference on Communications. pp. 1433–1437.Google Scholar
  32. 83.
    Guillemot, C., Renaud, M., Gambini, P., et al. (1998). Transparent optical packet switching: The European ACTS KEOPS project approach. IEEE/OSA Journal of Lightwave Technology 16(12), 2117–2134.CrossRefGoogle Scholar
  33. 97.
    Hunter, D.K. and Andonovic, I. (2000). Approaches to optical internet packet switching. IEEE Communications Magazine 38(9), 116–122.CrossRefGoogle Scholar
  34. 116.
    Jourdan, A., Chiaroni, D., Dotaro, E., et al. (2001). The perspective of optical packet switching in IP-dominant backbone and metropolitan networks. IEEE Communications Magazine 39(3), 136–141.CrossRefGoogle Scholar
  35. 117.
    Kitayama, K.-I. and Murata, M. (2003). Versatile optical code-based MPLS for circuit, burst, and packet switchings. IEEE/OSA Journal of Lightwave Technology 21(11), 2753–2764.CrossRefGoogle Scholar
  36. 118.
    Kamakura, K. and Sasase, I. (2001). A new modulation scheme using asymmetric error-correcting codes embedded in optical orthogonal codes for optical CDMA. IEEE Journal of Lightwave Technology 19(12), 1839–1850.CrossRefGoogle Scholar
  37. 125.
    Kitayama, K. and Murata, M. (2001). Photonic access node using optical code-based label processing and its applications to optical data networking. IEEE Journal of Lightwave Technology 19(10), 1401–1415.CrossRefGoogle Scholar
  38. 130.
    Krajinović, V., Aleksić, S., Remšak, G., et al. (2001). All-optical address recognition based on Mach-Zehnder interferometer. In: European Conference on Networks & Optical Communications (NOC 2001) Ipswich, UK.Google Scholar
  39. 131.
    Kwong, W.C., Zhang, J.G., and Yang, G.C. (1994). 2n prime-sequence code and its optical CDMA coding architecture. IEE Electronics Letters 30(6), 509–510.CrossRefGoogle Scholar
  40. 133.
    Laevens, K. and Bruneel, H. (2003). Analysis of a single-wavelength optical buffer. In: IEEE Infocom 2003, vol. 3, pp. 2262–2267. IEEE.Google Scholar
  41. 134.
    Lavrova, O.A., Rau, L., and Blumenthal, D.J. (2002). 10-Gb/s Agile wavelength conversion with nanosecond tuning times using a multisection widely tunable laser. IEEE Journal of Lightwave Technology 20(4), 712–717.CrossRefGoogle Scholar
  42. 135.
    Lee, S.W. and Green, D.H. (1998). Coding for coherent optical CDMA networks. IEE Proceedings-Communication 145(3), 117–125.CrossRefGoogle Scholar
  43. 141.
    Lin, Y.M., Way, W.I., and Chang, G.K. (2000) A novel optical label swapping technique using erasable optical single-sideband subcarrier label. IEEE Photonics Technology Letters 12(8), 1088–1090.CrossRefGoogle Scholar
  44. 142.
    Listanti, M., Eramo, V., and Sabella, R. (2000). Architectural and technological issues for future optical internet networks. IEEE Communications Magazine 38(9), 82–92. DOI 10.1109/35.868147.CrossRefGoogle Scholar
  45. 145.
    Maier, G. and Pattavina, A. (2001). Generalized space-equivalent analysis of optical cross-connect architectures. IEEE/OSA Journal Lightwave Technology 1(4), 159–168.Google Scholar
  46. 147.
    Mak, M. and Tsang, H. (2000). Polarization-insensitive widely tunable wavelength converter using a single semiconductor optical amplifier. IEE Electronics Letters 36, 152–153.CrossRefGoogle Scholar
  47. 152.
    Meagher, B., Chang, G.K., Ellinas, G., et al. (2000). Design and implementation of ultra-low latency optical label switching for packet-switched WDM networks. IEEE Journal of Lightwave Technology 18(12), 1978–1987.CrossRefGoogle Scholar
  48. 160.
    Muretto, G. and Raffaelli, C. (2006). Performance evaluation of asynchronous multi-fibre optical packet switches. In: Proceedings of ONDM 2006. Copenhagen, DK.Google Scholar
  49. 167.
    Nord, M. (2004). Waveband based multi-plane optical packet switch with partially shared wavelength converters. Proceedings of 8th Working Conference on Optical Network Design and Modeling (ONDM), pp. 1–19.Google Scholar
  50. 169.
    N. Wada, Chujo, W., and Kitayama, K. (2001). 1.28 Tbit/s (160 Gbit/s × 8 wavelengths) throughout variable length packet switching using optical code based label switch. In: 27th European Conference on Optical Communication (ECOC 2001). Amsterdam, Netherlands, vol. 6, no. 2, pp. 62–63.Google Scholar
  51. 179.
    Olsson, B.E., Ohlen, P., Rau, L., et al. (2000). Wavelength routing of 40 Gbit/s packets with 2.5 Gbit/s header erasure/rewriting using an all-fiber wavelength converter. IEE Electronics Letters 36(4), 345–347.Google Scholar
  52. 180.
    O’Mahony, M., Simeonidou, D., Hunter, D., et al. (2001). The application of optical packet switching in future communication networks. IEEE Communications Magazine 39(3), 128–135.CrossRefGoogle Scholar
  53. 182.
    Orphanoudakis, T.G., Drakos, A., Matrakidis, C., et al. (2007). A hybrid optical switch architecture with shared electronic buffers. In: Proceedings of International Conference on Transparent Optical Networks ICTON.Google Scholar
  54. 183.
    Overby, H. (2004). Performance modelling of synchronous bufferless OPS networks. In: Proceedings of International Conference on Transparent Optical Networks ICTON, vol. 1, pp. 22–28.Google Scholar
  55. 190.
    Parker, C. and Walker, S. (1999). Design of arrayed-waveguide gratings using hybrid Fourier–Fresnel transform techniques. IEEE Journal on Selected Topics in Quantum Electronics 5(5), 1379–1384.CrossRefGoogle Scholar
  56. 194.
    Pattavina, A. (2005). Architecture and performance of optical packet switching nodes for Ip networks. Journal of Lightwave Technology 23(3), 1023–1032.CrossRefGoogle Scholar
  57. 195.
    Pattavina, A. (2005). Multiwavelength switching in Ip optical nodes adopting different buffering strategies. Optical Switching and Networking 1(1), 66–75.CrossRefGoogle Scholar
  58. 198.
    Prucnal, P. and Santoro, M. (1986). Spread spectrum fiber optic local area network using CDMA and optical correlation. IEEE Journal of Lightwave Technology 4(5), 30–314.CrossRefGoogle Scholar
  59. 202.
    Raffaelli, C. (2000). Design of a multistage optical packet switch. European Transactions on Telecommunications 11(5), 443–451.CrossRefGoogle Scholar
  60. 203.
    Raffaelli, C. and Savi, M. (2006). Performance modelling of synchronous buffer-less optical packet switch with partial wavelength conversion. In: Proceedings of IEEE ICC 2006. Istanbul, Turkey.Google Scholar
  61. 204.
    Raffaelli, C., Savi, M., and Stavdas, A. (2006). Sharing wavelength converters in multistage optical packet switches. In: Proceedings of IEEE HPSR. Poznan, PL.Google Scholar
  62. 205.
    Raffaelli, C. and Zaffoni, P. (2003). Packet assembly at optical packet network access and its effect on TCP performance. In: Proceedings of HPSR High Performance Switching and Routing 2003. Torino, Italy.Google Scholar
  63. 206.
    Raffelli, C. and Muretto, G. (2006). Combining contention resolution schemes in WDM optical packet switches with multifiber interfaces. Journal of Optical Networking 6(1), 74–89.Google Scholar
  64. 213.
    Reviriego, P., Hernández, J.A., and Aracil, J. (2007). Analysis of average burst-assembly delay and applications in proportional service differentiation. Photonic Network Communications 14(2), 183–197.CrossRefGoogle Scholar
  65. 221.
    Bregni, S., Pattavina, A. and Vegetti, G. (2003). Architecture and performance of AWG-based optical switching nodes for IP networks. IEEE Journal on Selected Areas in Communications 21(7), 1113–1121.CrossRefGoogle Scholar
  66. 222.
    Okamoto, S., Watanabe, A. and Sato, K.I. (1996). Optical path cross-connect node architectures for photonic transport network. IEEE/OSA Journal of Lightwave Technology 14(6), 1410–1422.CrossRefGoogle Scholar
  67. 224.
    Santop, M.A. and Prucnal, P. (1987). Asynchronous fiber optic local area network using CDMA and optical correlation. IEEE Proceedings 75(10), 1336–1338.Google Scholar
  68. 225.
    Segatto, M.E.V., Kashyap, R., Maxwell, G.D., et al. (2000). Multi Gbit/s bit parallel WDM transmission using dispersion managed fibers. IEEE Photonics Technology Letters 17(8), 995–997.CrossRefGoogle Scholar
  69. 226.
    Shen, S. and Weiner, A.M. (1999). Demonstration of timing skew compensation for bit-parallel WDM data transmission with picosecond precision. IEEE Photonics Technology Letters 11(5), 566–568.CrossRefGoogle Scholar
  70. 238.
    Stavdas, S. (2003). Architectures, technology, and strategy for gracefully evolving optical packet switching networks. Optical Networks Magazine 4(3), 92–107.Google Scholar
  71. 248.
    Tancevski, L., Yegnanarayanan, S., Non, G.C., et al. (2000). Optical routing of asynchronous, variable length packets. IEEE Journal on Selected Areas in Communications 18(10), 2084–2093.CrossRefGoogle Scholar
  72. 250.
    Tančevski, L., Bazgaloski, L., Andonovic, I., et al. (1994). Incoherent asynchronous optical CDMA using gold codes. IEE Electronics Letters 30(9), 712–723.CrossRefGoogle Scholar
  73. 251.
    Tančevski, L., Tamil, L., and Callegati, F. (1999). Nondegenerate buffers: An approach for building large optical memories. IEEE Photonics Technology Letters 11(8), 1072–1074.CrossRefGoogle Scholar
  74. 255.
    Tzanakaki, A. and O’Mahony, M. (2000). Analysis of tunable wavelength converters based on cross-gain modulation in semiconductor optical amplifiers operating in the counter propagating mode. IEE Proceedings Optoelectronics 147, 49–55.CrossRefGoogle Scholar
  75. 262.
    Wada, N., Cincotti, G., Yoshima, S., et al. (2006). Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers—Part II: Experiments and applications. IEEE/OSA Journal of Lightwave Technology 24(1), 113–121.CrossRefGoogle Scholar
  76. 263.
    Wada, N., Harai, H., and Kubota, F. (2003). 40 Gbit/s interface optical code based photonic packet switch prototype. In: Proceedings of Optical Fiber Communications Conference OFC 2003.Google Scholar
  77. 264.
    Wada, N. and Kitayama, K. (1999). A 10 Gbit/s optical code division multiplexing using 8-Chirp optical bipolar code and coherent detection. IEEE Journal of Lightwave Technology 17(10), 1758–1765.CrossRefGoogle Scholar
  78. 267.
    White, I.a., Penty, R., Webster, M., et al. (2002). Wavelength switching components for future photonic networks. IEEE Communications Magazine 40, 74–81.Google Scholar
  79. 268.
    White, I.M., Wonglumsom, D., Shrikhande, K., et al. (2000). The architecture of HORNET: A packet-over-WDM multiple-access optical metropolitan area ring network. Computer Networks 32(5), 587–598.CrossRefGoogle Scholar
  80. 273.
    Yao, S., Mukherjee, B., and Dixit, S. (2000). Advances in photonic packet switching: An overview. IEEE Communications Magazine 38(2), 84–94.CrossRefGoogle Scholar
  81. 277.
    Yoo, S. (1996). Wavelength conversion technologies for WDM network applications. IEEE Journal of Lightwave Technology 14(6), 955–966.CrossRefGoogle Scholar
  82. 285.
    Zhou, D., Wang, B.C., Runser, R.J., et al. (2001). Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber. IEEE Photonics Technology Letters 13(4), 382–384.CrossRefGoogle Scholar
  83. 286.
    Zhu, X. and Khan, J. (2003). Queuing models of optical delay lines in synchronous and asynchronous optical packet-switched networks. Optical Engineering 42(6), 1741–1748.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Carla Raffaelli
    • 1
  • Slavisa Aleksic
    • 2
  • Franco Callegati
    • 3
  • Walter Cerroni
    • 1
  • Guido Maier
    • 4
  • Achille Pattavina
    • 4
  • Michele Savi
    • 1
  1. 1.Department of Electronics, Computer Science and SystemsUniversit di BolognaItaly
  2. 2.Institute of Communication NetworksVienna University of TechnologyAustria
  3. 3.Department of Electronics, Computer Science and SystemsAlma Mater Studiorum – Università di BolognaItaly
  4. 4.Department of Electronics and InformationPolitecnico di MilanoMilanItaly

Personalised recommendations