Emerging Robotics

  • Ben Challacombe
  • Kaspar Althoefer
  • Dan Stoianovici
Part of the New Techniques in Surgery Series book series (NEWTECHN, volume 7)

We live in exciting times and the pace of change in medical and surgical technology has never been more rapid. Gordon Moore’s 1965 law stated that the power (memory) of computers would double every 18 months.1 Almost every measure of the capabilities of digital electronic devices remains linked to Moore’s law: processing speed, memory capacity, and even the number and size of pixels in digital cameras. This law continues to be true today in the field of surgical robotics. What have changed while technology continues to expand are the demands and expectations of our increasingly well-informed, demanding, and internet-literate patients. Patients want the best for themselves and their families and market forces themselves are driving expansion and development in many instances.


Needle Insertion Haptic Feedback Magnetic Resonance Elastography Surgical Robot Haptic Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge contributions from Mr. Hongbin Liu, Mr. Dinusha Zzbyszewski, Mr. David Noonan, Professor Lakmal Seneviratne, and Dr. Adriano Cavalcanti.


  1. 1.
    GE. Cramming more components onto integrated circuits. Electron Mag. 1965;38:8Google Scholar
  2. 2.
    Peplinski R. Past, present and future of the Da Vinci robot. 2nd UK Robotic Urology Course; 2006Google Scholar
  3. 3.
    Wagner C, Stylopoulos N, Howe R. The role of force feedback in surgery: analysis of blunt dissection. In: Proceedings of the IEEE 10th Symposium on Haptic Interfaces for Virtual Environmental &Teleoperator systems; 2002Google Scholar
  4. 4.
    Deml B, Ortmaier T, Seibold U. The touch, and feel in minimally invasive surgery. In: IEEE International Workshop on Haptic Audio Visual Environment, and Their Applications, Ottawa, ON; 2005:33–38CrossRefGoogle Scholar
  5. 5.
    Seibold U, Kuebler B, Hirzinger G. Prototype of instrument for minimally invasive surgery with 6-axis force sensing capability. In: Proceeding of the IEEE International Conference on Robotics, and Automation, Barcelona, Spain; 2005:496–501CrossRefGoogle Scholar
  6. 6.
    Menciassi A, Eisinberg A, Carrozza M et al Force sensing microinstrument for measuring tissue properties, and pulse in microsurgery. IEEE/ASME Trans Mechatron. 2003;8:10CrossRefGoogle Scholar
  7. 7.
    Ottermo M, Stavdahl O, Johansen T. Palpation instrument for augmented minimally invasive surgery. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots, and Systems, Sendai, Japan; 2004:3960–3964Google Scholar
  8. 8.
    Dargahi J, Parameswaran M, Payandeh S. A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication, and experiments. J Microelectromech Syst. 2000;9:329CrossRefGoogle Scholar
  9. 9.
    Peirs J, Clijnen J, Reynaerts D, et al A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sensors Actuators A. 2004;115:447CrossRefGoogle Scholar
  10. 10.
    Sutherland G, McBeth P, Louw D. NeuroArm: An MR Compatible Robot for Microsurgery. Amsterdam: Elsevier Science; 2003 International congress series, 1256: 504Google Scholar
  11. 11.
    Okamura AM. Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Rob Int J. 2004;31(6):499–508CrossRefGoogle Scholar
  12. 12.
    Brouwer I, Ustin J, Bentley L, et al Measuring in-vivo animal soft tissue properties for haptic modelling in surgical simulation. Stud Health Technol Inform. 2001;81:69–74PubMedGoogle Scholar
  13. 13.
    Ottensmeyer M. In-vivo measurement of solid organ visco-elastic properties. Stud Heatlh Technol Inform. 2002;85:328Google Scholar
  14. 14.
    Brown J, Rosen J, Kim Y, et al In-vivo and in-situ compressive properties of porcine abdominal soft tissues. Stud Health Technol Inform. 2003;94:26–32PubMedGoogle Scholar
  15. 15.
    Wellman P, Howe R. Modelling probe and tissue interaction for tumour feature extraction. In: ASME summer Bioengineering conference, Sun River, OR; 1997Google Scholar
  16. 16.
    Egorov V, Ayrapetyan S, Sarvazyan AP. Prostate mechanical imaging: 3-D image composition and feature calculations. IEEE Trans Med Imag. 2006;25(10):1329–1340CrossRefGoogle Scholar
  17. 17.
    Miller AP, Peine WJ, Son JS, et al Tactile imaging system for localizing lung nodules during video-assisted thoracoscopic surgery. In: Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy; 2007:2996–3001Google Scholar
  18. 18.
    Wellman SP. Tactile imaging of breast masses: first clinical report. Arch Surg. 2001;136:204–208CrossRefPubMedGoogle Scholar
  19. 19.
    Beasley RA, Howe RD. Tactile tracking of arteries in robotic surgery. Proc IEEE Int Conf Rob Autom. 2002;4:3801–3806Google Scholar
  20. 20.
    Levinson SF, Shinagawa M, Sato T. Sonoelastic determination of human skeletal muscle elasticity. J Biomech. 1995;28(10):1145–1154CrossRefPubMedGoogle Scholar
  21. 21.
    Taylor LS, Porter BC, Rubens DJ, Parker KJ. Three-dimensional sonoelastography: principles and practices. Physics Med Biol. 2000;45(6):1477–1494CrossRefGoogle Scholar
  22. 22.
    Konofagou EE, Hynynen K. Localized harmonic motion imaging theory, simulations and experiments. Ultrasound Med Biol. 2003;29:1405–1413CrossRefPubMedGoogle Scholar
  23. 23.
    Shan B, Pelegri A, Maleke C, Konofagou E. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging. J Biomech. 2008;41(10):2150–2158CrossRefPubMedGoogle Scholar
  24. 24.
    Manducam A.: non-invasive mapping of tissue elasticity. Med Image Anal. 2000;5(4):237–254CrossRefGoogle Scholar
  25. 25.
    Noonan D, Liu H, Zweiri Y et al A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery. In: International Conference on Robotics And Automation, Rome, Italy; 2007Google Scholar
  26. 26.
    Murphy D, Challacombe B, Nedas T, et al Equipment and technology in robotics. Arch Esp Urol. 2007;60(4):349–355CrossRefPubMedGoogle Scholar
  27. 27.
    Liu H, Noonan DP, Zweiri YH, Althoefer K, Seneviratne LD. The development of nonlinear viscoelastic model for the application of soft tissue identification. In: IEEE/RSJ International Conference on Intelligent Robots and Systems; 2007:208–213Google Scholar
  28. 28.
    Puangmali P, Althoefer K, Seneviratene LD, Murphy D, Dasgupta P. State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sens J. 2008;8(4):371–381CrossRefGoogle Scholar
  29. 29.
    Al-jaafreh TM, Seneviratne LD, Zweiri YH, Althoefer K. Modelling soft tissue-mechatronic tool interactions during indentation. Int J Model, Identif Control (IJMIC). 2008;4(4):337–347Google Scholar
  30. 30.
    Al-ja’afreh TM, Zweiri YH, Seneviratne LD, Althoefer K. A new soft tissue indentation model for estimating “force-displacement” characteristics using circular indenters. Proceedings of the Institution of Mechanical Engineers (IMechE), Part H. J Eng Med. 2008;222(5):805–815CrossRefGoogle Scholar
  31. 31.
    Althoefer K, Zbyszewski D, Liu H, et al Air-cushion force sensitive probe for soft tissue investigation during minimally invasive surgery. In: 7th IEEE Conference on Sensors, Lecce, Italy; 2008 [unconditionally accepted for inclusion in 7th IEEE Conference on Sensors]Google Scholar
  32. 32.
    Zbyszewski D, Liu H, Puangmali P, et al Wheel/tissue force interaction: a new concept for soft tissue diagnosis during MIS. In: Proceedings of 2008 International IEEE Engineering in Medical and Biological Society Conference, Vancouver, BC, Canada;2008Google Scholar
  33. 33.
    Puangmali P, Liu H, Althoefer K, Seneviratne LD. Optical fiber sensor for soft tissue investigation during minimally invasive surgery. In: IEEE International Conference on Robotics and Automation (ICRA’08), Pasadena, CA; 2008:2934–2939Google Scholar
  34. 34.
    Challacombe B, Patriciu A, Glass J, et al A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithotomy. Comput Aided Surg. 2005;10(3):165–171CrossRefPubMedGoogle Scholar
  35. 35.
    Su L-M, Stoianovici D, Jarrett TW, et al Robotic percutaneous access to the kidney; comparison with standard manual access. J Endourol. 2002;16:471–475CrossRefPubMedGoogle Scholar
  36. 36.
    Solomon SB, Patriciu A, Stoianovici DS. Tumor ablation treatment planning coupled to robotic implementation: a feasibility study. J Vasc Interv Radiol. 2006;17(5):903–907CrossRefPubMedGoogle Scholar
  37. 37.
    Stoianovici D, Patriciu A, Mazilu D, Petrisor D, Kavoussi L. A new type of motor: pneumatic step motor. IEEE/ASME Trans Mechatron. 2007;12(1):98–106 Scholar
  38. 38.
    Stoianovici D, Song D, Petrisor D, et al “MRI stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16:241–248CrossRefPubMedGoogle Scholar
  39. 39.
    Muntener M, Patriciu A, Petrisor D, et al Transperineal prostate intervention: robot for fully automated MR imaging–system description and proof of principle in a canine model. Radiology. 2008;247(2):543–549CrossRefPubMedGoogle Scholar
  40. 40.
    Shah S, Kapoor A, Ding J, et al Robotically assisted needle driver: evaluation of safety release, force profiles, and needle spin in a swine abdominal model. Int J CARS. 2008;3(2):173–179CrossRefGoogle Scholar
  41. 41.
    Cavalcanti A. Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine. IEEE Trans Nanotechnol. 2003;2:82.CrossRefGoogle Scholar
  42. 42.
    Freitas RA Jr. Nanomedicine – basic capabilities.; 1999
  43. 43.
    Cavalcanti A, Freitas RA Jr. Nanorobotics control design: a collective behaviour approach for medicine. IEEE Trans Nanobiosci. 2005;4:133CrossRefGoogle Scholar
  44. 44.
    Srivastava N, Banerjee K. Performance analysis of carbon nanotube interconnects for VLSI applications. In: IEEE/ACM ICCAD International Conference on Computer-Aided Design; 2005:383–390Google Scholar
  45. 45.
    Bogaerts W, Baets R, Dumon P, et al Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol. 2005;23:401CrossRefGoogle Scholar
  46. 46.
    Cavalcanti A, Shrinzadeh B, Freitas RA, et al Medical Nanorobot Architecture Based on Nanobioelectronics. Recent Patents on Nanotechnology. 1st ed. Pennington: Bentham Science; 2007Google Scholar
  47. 47.
    Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed Nanotechnol Biol Med. 2005;1:101–109Google Scholar
  48. 48.
    Janda E, Nevolo M, Lehmann K, et al Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. 2006;25:7117CrossRefPubMedGoogle Scholar
  49. 49.
    Couvreur P, Gref R, Andrieux K, et al Nanotechnologies for drug delivery: application to cancer and autoimmune diseases. Progress in solid state. Chemistry. 2006;34:231Google Scholar
  50. 50.
    Hochberger J, Lamade W. Transgastric surgery in the abdomen: the dawn of a new era? Gastrointest Endosc. 2005;62(2):293–296CrossRefPubMedGoogle Scholar
  51. 51.
    Ota T, Patronik NA, Schwartzman D, Riviere CN, Zenati MA. Minimally invasive epicardial injections using a novel semiautonomous robotic device. Circulation. 2008;118(14 suppl):S115–S120CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  • Ben Challacombe
  • Kaspar Althoefer
  • Dan Stoianovici

There are no affiliations available

Personalised recommendations