Skip to main content

Catalyst Contamination in PEM Fuel Cells

  • Chapter

Abstract

The effects of impurities on fuel cells, often referred to as fuel cell contamination, is one of the most important issues in fuel cell operation and applications. Contamination is closely associated with proton exchange membrane fuel cell (PEMFC) durability and stability, both of which are important factors in the development and commercialization of PEMFC technology. Studies have identified that the membrane electrode assembly (MEA), the heart of the PEMFC, is the fuel cell component most affected by contamination. Impurities in the air and fuel streams damage the MEA by affecting both the anode and cathode catalyst layers (CLs), the gas diffusion layers (GDLs), as well as the proton exchange membrane (PEM), causing MEA performance degradation or even fuel cell failure. In general, PEMFC contamination effects can be categorized into three major types: (1) kinetic losses caused by the poisoning of both anode and cathode catalyst sites or a decrease in the catalyst activity; (2) ohmic losses due to an increase in the resistance of membrane and ionomer, caused by alteration of the proton transportation path; and (3) mass transfer losses due to changes in structure and in the ratio between the hydrophobicity and hydrophilicity of CLs, GDLs, and the PEM. Among those effects, the most significant is the kinetic effect of the anode and cathode electrocatalysts. This chapter presents PEMFC contamination with a focus on the anode and cathode catalyst layers. Catalyst contamination mechanisms, experimental results, modeling, as well as mitigation strategies are also covered in detail. For further information, such as contamination effects on other parts of PEMFCs, the reader is referred to a recent review paper [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, et al. A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 2007;165:739–56.

    Article  Google Scholar 

  2. Mughal A, Li X. Experimental diagnostics of PEM fuel cells. Int J Environ Stud 2006;63:377–89.

    Article  Google Scholar 

  3. Larminie J, Dicks A. Proton exchange membrane fuel cells. In: Fuel cell systems explained. 2nd ed. London: John Wiley & Sons, 2003; 67–120.

    Google Scholar 

  4. Li X. Chapter 7. Principles of fuel cells. New York: Taylor & Francis Group, 2006.

    Google Scholar 

  5. Dicks AL. Hydrogen generation from natural gas for the fuel cell systems of tomorrow. J Power Sources 1996;61:113–24.

    Article  Google Scholar 

  6. Hohlein B, Boe M, Bogild-Hansen J, Brockerhoff P, Colsman G, Emonts B, et al. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer. J Power Sources 1996;61:143–7.

    Article  Google Scholar 

  7. Schmidt VM, Brockerhoff P, Hohlein B, Menzer R, Stimming U. Utilization of methanol for polymer electrolyte fuel cells in mobile systems. J Power Sources 1994;49:299–313.

    Article  Google Scholar 

  8. Rajalakshmi N, Jayanth TT, Dhathathreyan KS. Effect of carbon dioxide and ammonia on polymer electrolyte membrane fuel cell stack performance. Fuel Cells 2003;3:177–80.

    Article  Google Scholar 

  9. de Bruijn FA, Papageorgopoulos DC, Sitters EF, Janssen GJM. The influence of carbon dioxide on PEM fuel cell anodes. J Power Sources 2002;110:117–24.

    Article  Google Scholar 

  10. Janssen GJM. Modelling study of CO2 poisoning on PEMFC anodes. J Power Sources 2004;136:45–54.

    Article  Google Scholar 

  11. Gu T, Lee WK, Zee JWV. Quantifying the ‘reverse water gas shift’ reaction inside a PEM fuel cell. Appl Catal B: Environ 2005;56:43–9.

    Article  Google Scholar 

  12. Papageorgopoulos DC, de Bruijn FA. Examining a potential fuel cell poison: A voltammetry study of the influence of carbon dioxide on the hydrogen oxidation capability of carbon-supported Pt and PtRu anodes. J Electrochem Soc 2002;142:A140–5.

    Article  Google Scholar 

  13. Divisek J, Oetjen HF, Peinecke V, Schmidt VM, Stimming U. Components for PEM fuel cell systems using hydrogen and CO containing fuels. Electrochim Acta 1998;43:3811–15.

    Article  Google Scholar 

  14. Shi W, Yi B, Hou M, Shao Z. The effect of H2S and CO mixtures on PEMFC performance. Intern J Hydrogen Energy 2007;32:4412–17.

    Article  Google Scholar 

  15. Mathieu MV, Primet M. Sulfurization and regeneration of platinum. Appl Catal 1984;9:361–70.

    Article  Google Scholar 

  16. Ramasubramanian N. Anodic behavior of platinum electrodes in sulfide solutions, the formation of platinum sulfide. J Electroanal Chem 1975;64:21–37.

    Article  Google Scholar 

  17. Shi W, Yi B, Hou M, Jing F, Yu H, Ming P. The influence of hydrogen sulfide on proton exchange membrane fuel cell anodes. J Power Sources 2007;164:272–7.

    Article  Google Scholar 

  18. Mohtadi R, Lee W-K, Van Zee JW. The effect of temperature on the adsorption rate of hydrogen sulfide on Pt anodes in a PEMFC. Applied Catalysis B: Environmental 2005;56:37–42.

    Article  Google Scholar 

  19. Michaelides A, Hu P. Hydrogenation of S to H2S on Pt(111): A first-principles study. J Chem Phys 2001;115:8570–4.

    Article  Google Scholar 

  20. Mohtadi R, Lee W-K, Cowan S, Van Zee JW, Murthy M. Effect of hydrogen sulfide on the performance of a PEMFC. Electrochem Solid State Lett 2003;6:A272–4.

    Article  Google Scholar 

  21. Knights S, Jia N, Chuy C, Zhang J. Fuel cell reactant supply: effects of reactant contaminants. Fuel cell seminar 2005: fuel cell progress, challenges and markets; 2005 Nov 14–18; Palm Springs, California; Burnaby, BC: Ballard Power Systems; 2005: 121–5.

    Google Scholar 

  22. Chellappa AS, Fischer CM, Thomson WJ. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl Catal A, Gen 2002;227:231–40.

    Article  Google Scholar 

  23. Arthur D. Little Inc. Cost analysis of fuel cell system for transportation: baseline system cost estimate. Cambridge, MA: 2000 Mar. Ref. No.: 49739. SFAA No.: DE-SCO2–98EE50526. Sponsored by the US Department of Energy. Available from: http://www.eere.energy.gov/afdc/pdfs/baseline_cost_model.pdf.

    Google Scholar 

  24. Borup R, Inbody M, Tafoya J, Semelsberger T, Perry L. Durability studies: gasoline/reformate durability. 2002 National Laboratory R&D Meeting, DOE Fuel Cells for Transportation Program. Los Alamos, NM: Los Alamos National Laboratory Fuel Cell Program. 2002. Available from: http://www.eere.energy.gov/ hydrogenandfuelcells/pdfs/nn0123ba.pdf.

    Google Scholar 

  25. Uribe FA, Gottesfeld S.TA, Zawodzinski. Effect of ammonia as fuel impurity on proton exchange membrane fuel cell performance. J Electrochem Society 2002;149:A293–6.

    Article  Google Scholar 

  26. Soto HJ, Lee WK, Van Zee JW, Murthy M. Effect of transient ammonia concentrations on PEMFC performance. Electrochem Solid-State Lett-2003;6:A133–7.

    Article  Google Scholar 

  27. Halseid R, Vie PJS, Tunold R. Effect of ammonia on the performance of polymer electrolyte membrane fuel cells. J Power Sources 2006;154:343–50.

    Article  Google Scholar 

  28. Vogel W, Lundquist J, Ross P, Stonehart P. Reaction pathways and poisons—II: The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochim Acta 1975;20:79–93.

    Article  Google Scholar 

  29. Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S. Model for polymer electrolyte fuel cell operation on reformate feed: effects of CO, H2 dilution, and high fuel utilization. J Electrochem Soc 2001;148:A11–23.

    Article  Google Scholar 

  30. Chan SH, Goh SK, Jiang SP. A mathematical model of polymer electrolyte fuel cell with anode CO kinetics. Electrochim Acta 2003;48:1905–19.

    Article  Google Scholar 

  31. Zhang JJ, Wang HJ, Wilkinson DP, Song DT, Shen J, Liu ZS. Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities. J Power Sources 2005;164:58–71.

    Article  Google Scholar 

  32. Stonehart P, Kohlmayr G. Effect of poisons on kinetic parameters for platinum electrocatalyst sites. Electrochim Acta 1972;17:369–82.

    Article  Google Scholar 

  33. Shi Z, Song DT, Zhang JJ, Liu ZS, Knights S, Vohra R, et al. Transient analysis of hydrogen sulfide contamination on the performance of a PEM fuel cell. J Electrochem Society 2007;154:B609–15.

    Article  Google Scholar 

  34. Jing F, Hou M, Shi W, Fu J, Yu H, Ming P, et al. The effect of ambient contamination on PEMFC performance. J Power Sources 2007;166:172–6.

    Article  Google Scholar 

  35. Mohtadi R, Lee W, Van Zee JW. Assessing durability of cathodes exposed to common air impurities. J Power Sources 2004;138:216–25.

    Article  Google Scholar 

  36. Moore JM, Adcock PL, Lakeman JB, Mepsted GO. The effects of battlefield contaminants on PEMFC performance. J Power Sources 2000;85:254–60.

    Article  Google Scholar 

  37. Garzon F, Brosha E, Pivovar B, Rockward T, Uribe F, Urdampolleta I, et al. Effect of fuel and air impurities on PEM fuel cell performance. DOE hydrogen program–FY 2006 annual progress report: 905–9.

    Google Scholar 

  38. Contractor AQ, Lal H. The nature of species adsorbed on platinum from SO2 solutions. J Electroanal Chem 1978;93:99–107.

    Google Scholar 

  39. Contractor AQ, Lal H. Two forms of chemisorbed sulfur on platinum and related studies. J Electroanal Chem 1979;96:175–81.

    Article  Google Scholar 

  40. Garsany Y, Baturina O, Swider-Lyons KE. Impact of SO2 on the kinetics of Pt3Co/Vulcan carbon electrocatalysts for oxygen reduction. ECS Trans 2007;11:863–75.

    Article  Google Scholar 

  41. Garsany Y, Baturina OA, Swider-Lyons KE. Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts. J Electrochem Soc 2007;154:B670–5.

    Article  Google Scholar 

  42. Brosha E, Garzon F, Pivovar B, Rockward T, Springer T, Uribe F, et al. Effect of fuel and air impurities on PEM fuel cell performance. In: 2006 Annual DOE Fuel Cell Program Review. Arlington, Virginia, May 16–19, 2006.

    Google Scholar 

  43. Mangun CL, DeBarr JA, Economy J. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers. Carbon 2001;39:1689–96.

    Article  Google Scholar 

  44. Loucka T. Adsorption and oxidation of sulphur and of sulphur dioxide at the platinum electrode. J Electroanal Chem 1971;31:319–32.

    Article  Google Scholar 

  45. Bouwman P, Teliska ME, Lyons K. Increased poisoning tolerance of Pt-FePO oxygen reduction catalysts. In: Proton conducting membrane fuel cells IV. Van Zee et al., editors. Electrochemical Society Proceedings 2004.

    Google Scholar 

  46. Kennedy DM, Cahela DR, Zhu W, Westrom KC, Nelms RM, Tatarchuk BJ. Fuel cell cathode air filters: Methodologies for design and optimization. J Power Sources 2007;168:391–9.

    Article  Google Scholar 

  47. Betournay MC, Bonnell G, Edwardson E, Paktunc D, Kaufman A, Lomma AT. The effects of mine conditions on the performance of a PEM fuel cell. J Power Sources 2004;134:80–87.

    Article  Google Scholar 

  48. Ma X, Yang D, Zhou W, Zhang C, Pan X, Xu L, et al. Evaluation of activated carbon adsorbent for fuel cell cathode air filtration. J Power Sources 2008;175:383–9.

    Article  Google Scholar 

  49. Yang D, Ma J, Xu L, Wu M, Wang H. The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell. Electrochim Acta 2006;51:4039–44.

    Article  Google Scholar 

  50. Uribe F, Smith W, Wilson M, Valerio J, Rockward T, Garzon F, et al. Electrodes for polymer electrolyte membrane operation on hydrogen/air and reformate/air. FY 2003 Report. Los Alamos, NM: Los Alamos National Laboratory. Available from: http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/ive12_uribe.pdf.

    Google Scholar 

  51. Wickham DT, Banse BA, Koel BE. The adsorption of nitric oxide and nitrogen dioxide on polycrystalline platinum. Surf Sci 1989;223:82–100.

    Article  Google Scholar 

  52. de Vooys ACA, Beltramo GL, van Riet B, van Veen JAR, Koper MTM. Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochim Acta 2004;49:1307–14.

    Article  Google Scholar 

  53. Broder TL, Silvester DS, Aldous L, Hardacre C, Compton RG. Electrochemical oxidation of nitrite and the oxidation and reduction of NO2 in the room temperature ionic liquid [C2mim][NTf2]. J Phys Chem B 2007;111:7778–85.

    Article  Google Scholar 

  54. Szymanski ST, Gruver GA, Katz M, Kunz HR. The effect of ammonia on hydrogen-air phosphoric acid fuel cell performance. J Electrochem Soc 1980;127:1440–4.

    Article  Google Scholar 

  55. Halseid R, Bystron T, Tunold R. Oxygen reduction on platinum in aqueous sulphuric acid in the presence of ammonium . Electrochim Acta 2006;51:2737–42.

    Article  Google Scholar 

  56. Li H, Zhang JL, Fatih K, Wang Z, Tang Y, Shi Z, et al. PEM fuel cell contamination: testing and diagnosis of toluene-induced cathode degradation. J Power Sources, forthcoming.

    Google Scholar 

  57. Bussayajarn N, Therdthianwong S, Therdthianwong A. Improvement of cathodic reaction of proton exchange membrane fuel cell by ozone. Int J Hydrogen Energy 2007;32:392–9.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Li, H., Song, C., Zhang, J., Zhang, J. (2008). Catalyst Contamination in PEM Fuel Cells. In: Zhang, J. (eds) PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-936-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-935-6

  • Online ISBN: 978-1-84800-936-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics