Advertisement

Electrocatalytic Oxygen Reduction Reaction

  • Chaojie Song
  • Jiujun Zhang

Abstract

Oxygen (O2) is the most abundant element in the Earth’s crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes such as biological respiration, and in energy converting systems such as fuel cells. ORR in aqueous solutions occurs mainly by two pathways: the direct 4-electron reduction pathway from O2 to H2O, and the 2-electron reduction pathway from O2 to hydrogen peroxide (H2O2). In non-aqueous aprotic solvents and/or in alkaline solutions, the 1-electron reduction pathway from O2 to superoxide (O2 -) can also occur.

In proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs), ORR is the reaction occurring at the cathode. Normally, the ORR kinetics is very slow. In order to speed up the ORR kinetics to reach a practical usable level in a fuel cell, a cathode ORR catalyst is needed. At the current stage in technology, platinum (Pt)-based materials are the most practical catalysts. Because these Pt-based catalysts are too expensive for making commercially viable fuel cells, extensive research over the past several decades has focused on developing alternative catalysts, including non-noble metal catalysts [1]. These electrocatalysts include noble metals and alloys, carbon materials, quinone and derivatives, transition metal macrocyclic compounds, transition metal chalcogenides, and transition metal carbides. In this chapter, we focus on the O2 reduction reaction, including the reaction kinetics and mechanisms catalyzed by these various catalysts.

To assist readers, we first provide an overview of the following background information: the major electrochemical O2 reduction reaction processes, simple ORR kinetics, and conventional techniques for electrochemical measurements.

Keywords

Glassy Carbon Electrode Oxygen Reduction Reaction Oxygen Reduction Graphite Electrode Exchange Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang L, Zhang J, Wilkinson DP, Wang H. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 2006;156.2:171–82.CrossRefGoogle Scholar
  2. 2.
    Yeager E. Dioxygen electrocatalysis: mechanism in relation to catalyst structure. J Mol Catal 1986;38:5–25.CrossRefGoogle Scholar
  3. 3.
    Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. New York: Wiley, 1980.Google Scholar
  4. 4.
    Song C, Tang Y, Zhang J, Zhang J, Wang H, Shen J, et al., PEM fuel cell reaction kinetics in the temperature range of 23–120 °C. Electrochim Acta 2007;52:2552–61.CrossRefGoogle Scholar
  5. 5.
    Damjanovic A. Temperature dependence of symmetry factors and the significance of the experimental activation energies. J Electroanal Chem 1993;355:57–77.CrossRefGoogle Scholar
  6. 6.
    Zhang J, Tang Y, Song C, Xia Z, Wang H, Zhang J, et al. Effect of relative humidity on PEM fuel cell performance at elevated temperature. Forthcoming 2008.Google Scholar
  7. 7.
    Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface – a microelectrode investigation. J Electrochem Soc 192;139:2530–7.Google Scholar
  8. 8.
    Wkabayashi N, Takeichi M, Itagaki M, Uchida H, Watanabe M. Temperature dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. J Electroanal Chem 2005;574:339–46.CrossRefGoogle Scholar
  9. 9.
    Baker R, Wilkinson DP, Zhang J. Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta. Forthcoming 2008.Google Scholar
  10. 10.
    Lever ABP. The phthalocyaninds-molecules of enduring value: a two-dimensional analysis of redox potentials. J Porphyrins Phthalocyanines 1999;3:488–99.CrossRefGoogle Scholar
  11. 11.
    Zhang L, Song C, Zhang J, Wang H, Wilkinson DP. Temperature and pH dependent oxygen reduction catalyzed by iron fluoro-porphyrin adsorbed on a graphite electrode. J Electrochem Soc 2005;152:A2421–6.CrossRefGoogle Scholar
  12. 12.
    Song C, Zhang L, Zhang J, Wilkinson DP, Baker R. Temperature dependence of oxygen reduction catalyzed by cobalt fluorophthalocyanine adsorbed on a graphite electrode. Fuel Cells 2007;7:9–15.CrossRefGoogle Scholar
  13. 13.
    Antoine O, Durand R. RRDE study of oxygen reduction on Pt nanoparticles inside Nafion: H2O2 production in PEMFC cathode conditions. J Appl Electrochem 2000;30:839–844.CrossRefGoogle Scholar
  14. 14.
    Taylor RJ, Humffray AA. Electrochemical studies on glassy carbon electrodes II. Oxygen reduction in solutions of high pH (pH>10). J Electroanal Chem 1975;64:63–84.Google Scholar
  15. 15.
    Paliteiro C, Hamnett A, Goodenough JB. The electroreduction of oxygen on pyrolytic graphite. J Electroanal Chem 1987;233:147–59.CrossRefGoogle Scholar
  16. 16.
    Zhang M, Yan Y, Gong K, Mao L, Guo Z, Chen Y. Electrostatic layer by layer assembled carbon nanotube mutilayer film and its catalytic activity for oxygen reduction reaction. Langmuir 2004;20;8781–5.CrossRefGoogle Scholar
  17. 17.
    Taylor RJ, Humffray AA. Electrochemical studies on glassy carbon electrodes II. Oxygen reduction in solutions of low pH (pH<10). J Electroanal Chem 1975;64:85–94.Google Scholar
  18. 18.
    Davis M, Clark M, Yeager E, Hovorka F. Oxygen electrode. J Electrochem Soc 1959;106:56.CrossRefGoogle Scholar
  19. 19.
    Appel M, Appleby AJ. A ring disk electrode study of the reduction of oxygen on active carbon in alkaline solution. Electrochim Acta 1978;23:1243–6.CrossRefGoogle Scholar
  20. 20.
    Jurmann G, Tammeveski K. Electroreduction of oxygen on multi-walled carbon nanotube modified highly oriented pyrolytic graphite electrodes in alkaline solution. J Electroanal Chem 2006;597:119–26.CrossRefGoogle Scholar
  21. 21.
    Baez VB, Pletcher D. Preparation and characterization of carbon/titanium dioxide surfaces – the reduction of oxygen. J Electroanal Chem 1995;382:59–64.CrossRefGoogle Scholar
  22. 22.
    Morcos I, Yeager E. Kinetic studies of the oxygen-peroxide couple on pyrolytic graphite Electrochim Acta 1970;15:953–75.CrossRefGoogle Scholar
  23. 23.
    Maldonado S, Stevenson KJ. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 2005;109.10:4707–16.CrossRefGoogle Scholar
  24. 24.
    Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN. O2 reduction on graphite and nitrogen doped graphite: experiment and theory. J Phys Chem B 2006;110:1787–93.CrossRefGoogle Scholar
  25. 25.
    Hu I, Karweik DH, Kuwana T. Activation and deactivation of glassy carbon electrodes. J Electroanal Chem 1985;188:59–72.CrossRefGoogle Scholar
  26. 26.
    Sljukic B, Banks CE, Compton RG. An overview of the electrochemical reduction of oxygen at carbon based modified electrodes. J Iranian Chem Soc 2005;2:1–25.Google Scholar
  27. 27.
    Maruyama J, Abe I. Cathodic oxygen reduction at the interface between Nafion and electrochemically oxidized glassy carbon surfaces. J Electroanal Chem 2002;527:65–70.CrossRefGoogle Scholar
  28. 28.
    Jia N, Martin RB, Qi Z, Lefebvre MC, Pickup PG. Modification of carbon supported catalysts to improve performance in gas diffusion electrodes. Electrochim Acta 2001;46:2863–9.CrossRefGoogle Scholar
  29. 29.
    Sullivan MG, Kotz R, Haas O. Thick active layers of electrochemically modified glassy carbon, electrochemical impedance studies. J Electrochem Soc 2000;147:308–17.CrossRefGoogle Scholar
  30. 30.
    Huissoud A, Tissot P. Electrochemical reduction of 2-ethyl-9,10-anthraquinone (EAQ) and mediated formation of hydrogen peroxide in a two-phase medium. J Appl Electrochem 1999;29:11–25.CrossRefGoogle Scholar
  31. 31.
    Chen Q. Toward cleaner production of hydrogen peroxide in China. J Cleaner Production 2006;14:708–12.CrossRefGoogle Scholar
  32. 32.
    Huissoud A, Tissot P. Electrochemical reduction of 2-ethyl-9,10-anthraquinone on reticulated vitreous carbon and mediated formation of hydrogen peroxide. J Appl Electrochem 1998;28:653–7.CrossRefGoogle Scholar
  33. 33.
    Gyenge EL, Coloman CW. Electrosynthesis of hydrogen peroxide in acidic solutions by mediated oxygen reduction in a three-phase (aqueous/organic/gaseous) system. J Appl Electrochem 2003;33:655–63, 665–74.Google Scholar
  34. 34.
    Tammeveski K, Kontturi K, Nichols RJ, Potter RJ, Schiffrin DJ. Surface redox catalysis for O2 reduction on quinone modified glassy electrodes. J Electroanal Chem 2001;515:101–12.CrossRefGoogle Scholar
  35. 35.
    Sarapuu A, Helstein K, Schiffrin DJ, Tammeveski K. Kinetics of oxygen reduction on quinone modified HOPG and BDD electrodes in alkaline solution. Electrochem Solid-State Lett 2005;8:E30–3.CrossRefGoogle Scholar
  36. 36.
    Mirkhalaf F, Tammeveski K, Schiffrin DJ. Substituent effects on the electrocatalytic reduction of oxygen on quinone modified glassy carbon electrodes. Phys Chem Chem Phys 2004;6:1321–7.CrossRefGoogle Scholar
  37. 37.
    Vaik K, Sarapuu A, Tammeveski K, Mirkhalaf F, Schiffrin DJ. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. J Electroanal Chem 2004;564:159–66.CrossRefGoogle Scholar
  38. 38.
    Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K. Electrochemical reduction of oxygen on anthraquinone modified glassy carbon electrodes in alkaline solution. J Electroanal Chem 2003;541:23–9.CrossRefGoogle Scholar
  39. 39.
    Keita B, Nadjo L. Catalytic synthesis of hydrogen peroxide: an attractive electrochemical and photoelectrochemical route to the reduction of oxygen. J Electroanal Chem 1983;145:431–7.CrossRefGoogle Scholar
  40. 40.
    Salimi A, Eshghi H, Sharghi H, Golabi SM, Shamsipur M. Electrocatalytic reduction of dioxygen at the surface of glassy carbon electrodes modified by some anthraquinone substituted podands. Electroanalysis 1999;11:114–9.CrossRefGoogle Scholar
  41. 41.
    Wilson T, Zhang J, Oloman CC, Wayner DDM. Anthraquinone-2-carboxylic-allyl ester as a new electrocatalyst for dioxygen reduction to produce H2O2. Int J Electrochem Sci 2006;1:99–109.Google Scholar
  42. 42.
    Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 2002;45:117–229.CrossRefGoogle Scholar
  43. 43.
    Zhdanov VP, Kasemo B. Kinetics of electrochemical O2 reduction on Pt. Electrochem Commun 2006;8:1132–6.CrossRefGoogle Scholar
  44. 44.
    Norskov JK, Rossmeisl J, Logadotir A, Lindqvist L, Kitchin JR, Bligaard T, et al. Origin of the overpotential for oxygen reduction at a fuel cell cathode. J Phys Chem B 2004;108:17886–92.CrossRefGoogle Scholar
  45. 45.
    Shi Z, Zhang J, Liu Z, Wang H, Wilkinson DP. Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts Electrochim Acta 2006;51:1905–16.CrossRefGoogle Scholar
  46. 46.
    Hoare JP. The electrochemistry of oxygen. New York: Wiley, 1968.Google Scholar
  47. 47.
    Stassi A, D’Urso C, Baglio V, Di Blasi A, Antonucci V, Arico AS, et al. Electrocatalytic behaviour for oxygen reduction reaction of small nanostructured crystalline bimetallic Pt-M supported catalysts. J Appl Electrochem 2006;36:1143–9.CrossRefGoogle Scholar
  48. 48.
    Stamenkovic VR, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site activity. Science 2007;315:493–7.CrossRefGoogle Scholar
  49. 49.
    Jahnke H, Schonborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells. Top Cur Chem 1976;61:133–81.CrossRefGoogle Scholar
  50. 50.
    Zagal J, Bindra P, Yeager E. A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 1980;127:1506–17.CrossRefGoogle Scholar
  51. 51.
    Shi C, Anson FC. Catalytic pathways for the electroreduction of O2 by iron terakis(4-N-methylpyridyl)porphyrin or iron tetraphenylporphyrin adsorbed on edge plane pyrolytic graphite electrodes. Inorg Chem 1990;4298–305.Google Scholar
  52. 52.
    Shigehara K, Anson FC. Electrocatalytic activity of three iron porphyries in the reductions of dioxygen and hydrogen peroxide at graphite electrodes. J Phys Chem 1982;86:2776–83.CrossRefGoogle Scholar
  53. 53.
    Liu H, Weaver M, Wang C, Chang C. Dependence of electrocatalysis for dioxygen reduction by adsorbed cofacial dicobalt porphyrins upon catalyst structure. J Electroanal Chem 1983;145:439–47.CrossRefGoogle Scholar
  54. 54.
    Kadish KM, Fremond L, Ou Z, Shao J, Shi C, Anson FC, et al. Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorrole, and porphyrin-corrole dyads. J Am Chem Soc 2005;127:5625–31.CrossRefGoogle Scholar
  55. 55.
    Shi Z, Zhang J. Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J Phys Chem C 2007;111:7084–90.CrossRefGoogle Scholar
  56. 56.
    Alt H, Binder H, Sandstede G. Mechanism of electrocatalytic oxygen reduction on metal chelates. J Catal 1973;28:8–19.CrossRefGoogle Scholar
  57. 57.
    Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, et al. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta. Submitted 2008.Google Scholar
  58. 58.
    Baranton S, Coutanceau C, Garnier E, Leger J-M. How does -FePc catalyst dispersed onto high specific surface carbon support work toward oxygen reduction reaction (orr)? J Electroanal Chem 2006;590:100–10.CrossRefGoogle Scholar
  59. 59.
    Zagal J, Sen RK, Yeager E. Oxygen reduction by Co(II) tetrasulfonatephthalocyanine irreversibly adsorbed on a stress anneled pyrolytic graphite electrode surface. J Electroanal Chem 1977;83:207–13.Google Scholar
  60. 60.
    Collman JP, Marrocco M, Denisevich P. Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrode. J Electroanal Chem 1979;101:117–22.CrossRefGoogle Scholar
  61. 61.
    Savy M, Andro P, Bernard C, Magner G. Studies of oxygen reduction on the monomeres and polymeres-i. Principles, fundamentals, and choice of the central ion. Electrochim Acta 1973;18:191–7.CrossRefGoogle Scholar
  62. 62.
    Alonso-Vante N, Fieber-Erdmann M, Rossner H, Holub-Krappe E, Giorgetti Ch, Tadjeddine A, et al. The catalytic center of transition metal chalcogenides vis-à-vis the oxygen reduction reaction: an in situ electrochemical EXAFS study. J Phys IV France 1997;7:887–9.CrossRefGoogle Scholar
  63. 63.
    Alonso-Vante N, Jaegermann W, Tributsch H, Honle W, Yvon K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. J Am Chem Soc 1987;109:3251–7.CrossRefGoogle Scholar
  64. 64.
    Alonso-Vante N, Tributsch H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 1986;323:431–2.CrossRefGoogle Scholar
  65. 65.
    Schmidt TJ, Paulus UA, Gasteiger HA, Alonso-Vante N, Behm RJ. Oxygen reduction on Ru1.92Mo0.08SeO4, Ru/Carbon, and Pt/Carbon in pure and methanol-containing electrolytes. J Electrochem Soc 2000;147:2620–4.CrossRefGoogle Scholar
  66. 66.
    Duron S, Rivera-Noriega R, Leyva MA, Nkeng P, Poillerat G, Solorza-Feria O. Oxygen reduction on a RuxSy(CO)n cluster electrocatalyst in 0.5 M H2SO4. J Solid State Electrochem 2000;4:70–4.Google Scholar
  67. 67.
    Gonzalez-Huerrta RG, Chavez-Carvayar JA, Solorza-Feria O. Electrocatalysis of oxygen reduction on carbon supported Ru-based catalysts in a polymer electrolyte fuel cell. J Power Sources 2006;153:11–17.CrossRefGoogle Scholar
  68. 68.
    Gochi-Ponce Y, Alonso-Nunez G, Alonso-Vante N. Synthesis and electrochemical characterization of a novel chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction. Electrochem Commun 2006;8:1487–91.CrossRefGoogle Scholar
  69. 69.
    Lee K, Zhang L, Zhang J. Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction. Electrochem Commun 2007;9:1704–8.CrossRefGoogle Scholar
  70. 70.
    Pohlmann L, Tributsch H. Self-organized electron transfer. Electrochim Acta 1997;42:2737–48.CrossRefGoogle Scholar
  71. 71.
    Tributsch H, Pohlmann L. Electron transfer: classical approaches and new frontiers. Science 1998;279:1891–5.CrossRefGoogle Scholar
  72. 72.
    Susac D, Sode A, Zhu L, Wong P, Teo M, Bizzotto D, et al. A methodology for investigating new nonprecious metal catalysts for PEM fuel cells. J Phys Chem B 2006;110:10762–70.CrossRefGoogle Scholar
  73. 73.
    Mazza F, Trassatti S. Tungsten, titanium, and tantalum carbides and titanium nitrides as electrodes in redox system. J Electrochem Soc 1963;110:847–9.CrossRefGoogle Scholar
  74. 74.
    Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K. Stability and electrocatalytic activity for oxygen reduction in WC-Ta catalyst. Electrochim Acta 2004;49:3479–85.CrossRefGoogle Scholar
  75. 75.
    Meng H, Shen P. Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction. J Phys Chem B 2005;109:22705–9.CrossRefGoogle Scholar
  76. 76.
    Nie M, Shen P, Wu M, Wei Z, Meng H. A study of oxygen reduction on improved Pt-WC/C electrocatalysts. J Power Sources 2006;162:173–6.CrossRefGoogle Scholar
  77. 77.
    Gordon S, Hart EJ, Matheson MS, Rabani J, Thomas JK. Reaction constants of the hydrated electron. J Am Chem Soc 1963;85:1375–7.CrossRefGoogle Scholar
  78. 78.
    Sawyer DT, Sobkowiak A, Roberts Jr. JL. Electrochemistry for chemists. New York:Wiley, 1995; 358–402.Google Scholar
  79. 79.
    Maricle DL, Hodgson WG. Reduction of oxygen to superoxide anion in aprotic solvents. Anal Chem 1965;37:1562–5.CrossRefGoogle Scholar
  80. 80.
    Peover ME, White BS. Electrolytic reduction of oxygen in aprotic solvents: the superoxide ion. Electrochim Acta 1966;11:1061–7.CrossRefGoogle Scholar
  81. 81.
    Vsudevan D, Wendt H. Electroreduction of oxygen in aprotic media. J Electroanal Chem 1995;392:69–74.CrossRefGoogle Scholar
  82. 82.
    Saha MS, Ohsaka T. Electrode kinetics of the O2/O2-redox couple at Hg electrode in the presence of PVC in aprotic media. Electrochim Acta 2005;50:4746–51.CrossRefGoogle Scholar
  83. 83.
    Wu J, Che Y, Okeyoshi T, Okajima T, Matsumoto F, Tokuda K, et al. Hydrodynamic chronocoulometric determination of diffusion coefficients and concentrations of dioxygen in media containing quinoline, isopuinoline, and methyquinolines. Anal Chem 1999;71:4056–60.CrossRefGoogle Scholar
  84. 84.
    AlNashef IM, Leonard ML, Kittle MC, Matthews MA, Weidner JW. Electrochemical generation of superoxide in room temperature ionic liquids. Electrochem Solid-State Lett 2001;4:D16–18.CrossRefGoogle Scholar
  85. 85.
    AlNashef IM, Leonard ML, Matthews MA, Weidner JW. Superoxide electrochemistry in an ionic liquid. Ind Eng Chem Res 2002;41:4475–8.CrossRefGoogle Scholar
  86. 86.
    Zhang D, Okajima T, Matsumoto F, Ohsaka T. Electrochemical reduction of dioxygen in 1-n-alkyl-3-methylimidazolium tetrafluoroborate room temperature ionic liquids. J Electrochem Soc 2004;151:D31–7.CrossRefGoogle Scholar
  87. 87.
    Katayama Y, Onodera H, Yamagata M, Miura T. Electrochemical reduction of oxygen in some hydrophobic room temperature molten salt systems. J Electrochem Soc 2004;151:A59–63.CrossRefGoogle Scholar
  88. 88.
    Yang H, McCreery RL. Elucidation of the mechanism of dioxygen reduction on metal free carbon electrodes. J Electrochem Soc 2000;147:3420–8.CrossRefGoogle Scholar
  89. 89.
    Choi Y, Chjo K, Park S. Oxygen reduction at Co(II)2-disalophen modified carbon electrodes. J Electrochem Soc 1995;142:4107–12.CrossRefGoogle Scholar
  90. 90.
    Song C, Zhang L, Zhang J. Reversible one-electron electro-reduction of O2 to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. J Electroanal Chem 2006;587:293–8.CrossRefMathSciNetGoogle Scholar
  91. 91.
    Chevalet J, Rouelle F. Electrogeneration and some properties of the superoxide ion in aqueous solutions. J Electroanal Chem Interf Electrochem 1972;39:201–16.CrossRefGoogle Scholar
  92. 92.
    Beyer W, von Sturm F. Polarographic reduction of oxygen in presence of phthalocyanine complex. Angew Chem 1972;84:154–5.CrossRefGoogle Scholar

Copyright information

© Springer London 2008

Authors and Affiliations

  • Chaojie Song
  • Jiujun Zhang

There are no affiliations available

Personalised recommendations