Advertisement

Reliable Transport in Multihop Wireless Mesh Networks

  • Simon Heimlicher
  • Bernhard Plattner
Part of the Computer Communications and Networks book series (CCN)

Abstract

Traditional wireless access networks require a large number of stationary access points. Multihop wireless mesh networks use relaying among nodes to cover the same area with a smaller number of access points. However, communication among mobile nodes is challenging since mobility and radio signal propagation impairments lead to frequent disruptions of end-to- end paths, which violates fundamental assumptions of widely used network protocols such as TCP. In this chapter, we explore measures to improve the network performance and the user experience in multihop wireless mesh networks.

Keywords

Packet Loss Delivery Ratio Mesh Network Congestion Control Wireless Mesh Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.E. Perkins and P. Bhagwat, Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In: Conference on Communications Architectures, Protocols and Applications. SIGCOMM’94, ACM, pp. 234–244. ACM, New York, NY (1994).Google Scholar
  2. 2.
    D.B. Johnson and D.A. Maltz, Dynamic source routing in ad hoc wireless networks. In: Imielinski, T. and Korth, H. (Eds.) Mobile Computing, vol. 353. Kluwer, Dordrecht (1996). URL citeseer.ist.psu.edu/johnson96dynamic.htmlGoogle Scholar
  3. 3.
    C.E. Perkins and E.M. Royer, Ad-hoc on-demand distance vector routing. In: Workshop on Mobile Computer Systems and Applications. WMCSA’99. IEEE, p. 90. IEEE Computer Society, Washington, DC, (1999).Google Scholar
  4. 4.
    D. Aguayo, J. Bicket, S. Biswas, G. Judd, R. Morris, Link-level measurements from an 802.11b mesh network. In: Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. SIGCOMM ’04. ACM, pp. 121–132. ACM, New York, NY (2004).Google Scholar
  5. 5.
    V. Lenders, J. Wagner, and M. May, Analyzing the impact of mobility in ad hoc networks. In: ACM/Sigmobile Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality (REALMAN), Florence, Italy (2006).Google Scholar
  6. 6.
    P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S. Peh, and D. Rubenstein, Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet. In: Proceedings of the Tenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-X), San Jose, CA, USA (2002).Google Scholar
  7. 7.
    J.C. Kuo and W. Liao, Hop count distribution of multihop paths in wireless networks with arbitrary node density: Modeling and its applications. IEEE Transactions on Vehicular Technology 56, 2321–2331 (2007). CrossRefGoogle Scholar
  8. 8.
    J. Postel: Internet Protocol. IETF RFC 791 (1981).Google Scholar
  9. 9.
    J. Postel: Transmission Control Protocol. RFC 793 (Standard) (1981). URL http://www.ietf.org/rfc/rfc793.txt. Updated by RFC 3168.
  10. 10.
    V. Jacobson and M. Karels, Congestion avoidance and control. In: Proceedings of the ACM Symposium on Communications Architectures and Protocols (SIGCOMM’88), pp. 314–329 (1988). URL citeseer.ist.psu.edu/654992.htmlGoogle Scholar
  11. 11.
    Delay Tolerant Networking Research Group. http://www.dtnrg.org/
  12. 12.
    K. Scott and S. Burleigh, Bundle Protocol Specification. draft-irtf-dtnrg-bundle-spec-10.txt (2007).Google Scholar
  13. 13.
    . C.M. Ozveren, R. Simcoe, and G. Varghese, Reliable and efficient hop-by-hop flow control. IEEE Journal on Selected Areas in Communications 13(4), 642–650 (1995). CrossRefGoogle Scholar
  14. 14.
    . P.P. Mishra, H. Kanakia, and S.K. Tripathi, On hop-by-hop rate-based congestion control. IEEE/ACM Transactions on Networking 4(2), 224–239 (1996). CrossRefGoogle Scholar
  15. 15.
    D. King, K. Walker, and D. Platt, The price we pay for using TCP. International Conference on Networks 2004 (ICON 2004), vol. 1, pp. 9–13. IEEE, Washington, DC (2004).Google Scholar
  16. 16.
    A. Kortebi, L. Muscariello, S., and Oueslati, J. Roberts, Evaluating the number of active flows in a scheduler realizing fair statistical bandwidth sharing. In: International Conference on Measurement and Modeling of Computer Systems. SIGMETRICS’05. ACM, pp. 217–228. ACM, New York, NY (2005).Google Scholar
  17. 17.
    . H. Elaarag, Improving TCP performance over mobile networks. ACM Computer Surveys 34(3), 357–374 (2002). CrossRefGoogle Scholar
  18. 18.
    K.Y. Lee, S.S. Joo, and J. dong Ryoo, CAT: Contention aware transport protocol for IEEE 802.11 MANETs. Vehicular Technology Conference 2006, VTC 2006, vol. 2, pp. 523–527. IEEE, Washington, DC (2006).Google Scholar
  19. 19.
    S. Kopparty, S. Krishnamurthy, M. Faloutsos, S. Tripathi, Split TCP for mobile ad hoc networks. In: Proceedings of the IEEE Global Communications Conference (GLOBECOM 2002) (2002).Google Scholar
  20. 20.
    A.A. Hanbali, E. Altman, and P. Nain, A survey of tcp over ad hoc networks. IEEE Communications Surveys and Tutorials 7(3), 22–36 (2005). CrossRefGoogle Scholar
  21. 21.
    E. Ayanoglu, S. Paul, T.F. LaPorta, K.K. Sabnani, and R.D. Gitlin, AIRMAIL: A link-layer protocol for wireless networks. Wireless Networks 1(1), 47–60 (1995). CrossRefGoogle Scholar
  22. 22.
    H. Balakrishnan, S. Seshan, and R.H. Katz, Improving reliable transport and handoff performance in cellular wireless networks. ACM Wireless Networks 1(4), 469–481 (1995). CrossRefGoogle Scholar
  23. 23.
    S. Biaz and N.H. Vaidya, Distinguishing congestion losses from wireless transmission losses: A negative result. In: International Conference On Computer Communications and Networks (ICCCN 1998), October 12–15, 1998, Lafayette, Lousiana, USA, pp. 722–731. IEEE, Washington, DC (1998).Google Scholar
  24. 24.
    K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, A feedback based scheme for improving tcp performance in ad-hoc wireless networks. In: Proceedings of the International Conference on Distributed Computing Systems (ICDCS’98) (1998).Google Scholar
  25. 25.
    G. Holland and N.H. Vaidya, Analysis of TCP performance over mobile ad hoc networks. In: International Conference on Mobile Computing and Networking. MobiCom’99. ACM, New York, NY (1999).Google Scholar
  26. 26.
    M. Zhang, B. Karp, S. Floyd, and L. Peterson, RR-TCP: A reordering-robust TCP with DSACK. In: International Conference on Networking Protocols (ICNP 2003), Los Alamitos, CA, USA, vol. 00. IEEE Computer Society, Washington, DC (2003).Google Scholar
  27. 27.
    A. Bakre and B. Badrinath, I-TCP: Indirect TCP for mobile hosts. In: Proceedings of the 15th International Conference on Distributed Computing Systems (ICDCS’95). IEEE Computer Society, Los Alamitos, CA (1995).Google Scholar
  28. 28.
    . R. Caceres and L. Iftode, Improving the performance of reliable transport protocols in mobile computing environments. IEEE Journal on Selected Areas in Communications 13(5), 850–857 (1995). CrossRefGoogle Scholar
  29. 29.
    R. Yavatkar and N. Bhagawat, Improving end-to-end performance of TCP over mobile internetworks. In: Mobile’94 Workshop on Mobile Computing Systems and Applications. ACM, New York, NY (1994).Google Scholar
  30. 30.
    . K. Brown and S. Singh, M-TCP: TCP for mobile cellular networks. In: Proceedings of ACM SIGCOMM’97 27(5), 19–43 (1997). CrossRefGoogle Scholar
  31. 31.
    . I. Gitman, Comparison of hop-by-hop and end-to-end acknowledgment schemes in computer communication networks. IEEE Transactions on Communications [legacy, pre-1988] 24(11), 1258–1262 (1976). CrossRefMathSciNetGoogle Scholar
  32. 32.
    A. DeSimone, M.C. Chuah, and O.C. Yue, Throughput performance of transport-layer protocols over wireless LANs. In: Global Telecommunications Conference, 1993. GLOBE-COM’93, Houston, TX, USA, pp. 542–549. IEEE, Washington, DC (1993).Google Scholar
  33. 33.
    A. Sundararaj and D. Duchamp, Analytical Characterization of the Throughput of a Split TCP Connection. Technical Report 2003–04, Department of Computer Science, Stevens Institute of Technology (2003).Google Scholar
  34. 34.
    . J. Padhye, V. Firoiu, D.F. Towsley, and J.F. Kurose, Modeling TCP Reno Performance: A Simple Model and Its Empirical Validation. IEEE/ACM Transactions on Networking 8(2), 133–145 (2000). CrossRefGoogle Scholar
  35. 35.
    . Y. Yi and S. Shakkottai, Hop-by-hop congestion control over a wireless multi-hop network. IEEE/ACM Transactions on Networking 15(1), 133–144 (2007). CrossRefGoogle Scholar
  36. 36.
    J. Camp, J. Robinson, C. Steger, and E. Knightly, Measurement driven deployment of a twotier urban mesh access network. In: MobiSys’06: Proceedings of the Fourth International Conference on Mobile Systems, Applications and Services, pp. 96–109. ACM, New York, NY (2006).Google Scholar
  37. 37.
    J. Eriksson, S. Agarwal, P. Bahl, and J. Padhye, Feasibility study of mesh networks for all-wireless offices. In: MobiSys’06: Proceedings of the Fourth International Conference on Mobile Systems, Applications and Services, pp. 69–82. ACM, New York, NY (2006).Google Scholar
  38. 38.
    K. Xu, S. Bae, S. Lee, and M. Gerla, TCP behavior across multihop wireless networks and the wired internet. In: International Workshop on Wireless Mobile Multimedia. WOWMOM’02. ACM, pp. 41–48. ACM, New York, NY (2002).Google Scholar
  39. 39.
    A. Zimmermann, M. Gunes, M. Wenig, U. Meis, and J. Ritzerfeld, How to study wireless mesh networks: A hybrid testbed approach. In: AINA’07: Proceedings of the 21st International Conference on Advanced Networking and Applications, pp. 853–860. IEEE Computer Society, Washington, DC (2007).Google Scholar
  40. 40.
    A. Raniwala, S. Sharma, P. De, R. Krishnan, and T. cker Chiueh, Evaluation of a stateful transport protocol for multi-channel wireless mesh networks. In: Fifteenth IEEE International Workshop on Quality of Service, Evanston, IL, USA, 2007, pp. 74–82 (2007).Google Scholar
  41. 42.
    S. Floyd, T. Henderson, and A. Gurtov, The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 3782 (Proposed Standard) (2004). URL http://www.ietf.org/rfc/rfc3782.txt
  42. 43.
    S. Heimlicher, R. Baumann, M. May, B. Plattner, The transport layer revisited. In: Proc. of IEEE COMSWARE 2007. Bangalore, India (2007).Google Scholar
  43. 44.
    C. Perkins, E. Belding-Royer, and S. Das, Ad hoc On-Demand Distance Vector (AODV) Routing. RFC 3561 (Experimental) (2003). URL http://www.ietf.org/rfc/rfc3561.txt
  44. 45.
    S. Heimlicher, M. Karaliopoulos, H. Levy, and M. May, End-to-end vs. hop-by-hop transport under intermittent connectivity (invited paper). In: Proc. of ACM/ICST Autonomics 2007. Rome, Italy (2007).Google Scholar
  45. 46.
    I. Iosif and A.V.S. Gikhman, The Theory of Stochastic Processes II, Reprint of the First Ed, 2004 edn, 1975. Series: Classics in Mathematics. Springer, Berlin (2004).Google Scholar

Copyright information

© Springer-Verlag London 2009

Authors and Affiliations

  1. 1.Computer Engineering and Networks Laboratory (TIK)ETH ZurichSwitzerland

Personalised recommendations