Advertisement

Laser Lithotripsy Physics

  • Andrew J. Marks
  • Jinze Qiu
  • Thomas E. Milner
  • Kin Foong Chan
  • Joel M. H. TeichmanEmail author
Chapter

Abstract

The physics of laser lithotripsy are reviewed. The principal mechanisms by which lasers fragment urinary calculi are photomechanical or photothermal. Photomechanical effects are produced in lasers with short pulse durations, typically <1 μs. Such lasers include pulsed dye, Q-switched alexandrite, and FREDDY lasers. Photothermal effects are produced in lasers with long pulse durations, typically >10 μs. Such lasers include Ho:YAG and Er:YAG. Different fragmentation is seen with photomechanical and photothermal lasers. Photomechanical lasers tend to be more efficient whereas photothermal lasers are slower but produce smaller fragments and fragment all compositions. The physics of optical fibers used for Ho:YAG lithotripsy is reviewed.

Keywords

Laser Fiber Yttrium Aluminum Garnet Cavitation Bubble Gain Medium Pressure Transient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Teichman JMH. Lasers. In: Smith AD, Badlani GH, Bagley DH, et al., eds. Smith’s Textbook of Endourology. Hamilton, Ontario: BC Decker; 2007:37-40.Google Scholar
  2. 2.
    Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493-494.CrossRefGoogle Scholar
  3. 3.
    Patel CK, Mc Farlane RA, Faust WL. Selective excitation through vibrational energy transfer and optical maser action in N2–CO2. Physiol Rev. 1964;13:617-619.Google Scholar
  4. 4.
    Rosemberg SK. Carbon dioxide laser treatment of external genital lesions. Urology. 1985;25:555-558.CrossRefPubMedGoogle Scholar
  5. 5.
    Rosemberg SK. Lasers and squamous cell carcinoma of external genitalia. Urology. 1986;27:430-433.CrossRefPubMedGoogle Scholar
  6. 6.
    Greenbaum SS, Glogau R, Stegman SJ, et al. Carbon dioxide laser treatment of erythroplasia of Queyrat. J Dermatol Surg Oncol. 1989;15:747-750.PubMedGoogle Scholar
  7. 7.
    Sorokin PP, Lankard JR. Stimulated emission observed from an organic dye, chloroaluminium phthalocyanine. IBM J Res Dev. 1966;10:162.CrossRefGoogle Scholar
  8. 8.
    Dretler SP, Watson G, Parrish JA, Murray S. Pulsed dye laser fragmentation of ureteral calculi: initial clinical experience. J Urol. 1987;137:386-389.PubMedGoogle Scholar
  9. 9.
    Bhatta KM, Nishioka NS. Effect of pulse duration on microsecond-domain laser lithotripsy. Lasers Surg Med. 1989;9:454-457.CrossRefPubMedGoogle Scholar
  10. 10.
    Teichmann HO, Herrmann TR, Bach T. Technical aspects of lasers in urology. World J Urol. 2007;25:221-225. Epub (2007) May 30.CrossRefPubMedGoogle Scholar
  11. 11.
    Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992 Jun;72(3):531-558.PubMedGoogle Scholar
  12. 12.
    Berlien H-P, Muller G. Applied Laser Medicine. Germany: Springer; 2003.Google Scholar
  13. 13.
    Rink K, Delacrétaz G, Salathé RP. Fragmentation process of current laser lithotriptors. Lasers Surg Med. 1995;16:134-146.CrossRefPubMedGoogle Scholar
  14. 14.
    Chan KF, Pfefer TJ, Teichman JMH, Welch AJ. A perspective on laser lithotripsy: the fragmentation processes. J Endourol. 2001;15:257-273.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhong P, Tong HL, Cocks FH, Pearle MS, Preminger GM. Transient cavitation and acoustic emission produced by different laser lithotripters. J Endourol. 1998;12:371-378.CrossRefPubMedGoogle Scholar
  16. 16.
    Kang HW, Lee H, Teichman JM, Oh J, Kim J, Welch AJ. Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy. Lasers Surg Med. 2006;38:762-772.CrossRefPubMedGoogle Scholar
  17. 17.
    Chan KF, Hammer DX, Choi B, et al. Free electron laser lithotripsy: threshold radiant exposures. J Endourol. 2000;14:161-167.CrossRefPubMedGoogle Scholar
  18. 18.
    Teichman JM, Vassar GJ, Bishoff JT, Bellman GC. Holmium: YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol. 1998;159(1):17-23.CrossRefPubMedGoogle Scholar
  19. 19.
    Dretler SP. An evaluation of ureteral laser lithotripsy: 225 consecutive patients. J Urol. 1990;143:267-272.PubMedGoogle Scholar
  20. 20.
    Fradin D, Bass M. Electron avalanche breakdown induced by ruby laser light. Appl Phys Lett. 1973;22(5):206-208.CrossRefGoogle Scholar
  21. 21.
    Doukas AG, Zweig AD, Frisoli JK, Birngruber R, Deutsch TF. Non-invasive determination of shock wave pressure generated by optical breakdown. App Phy B. 1991;53:237-245.CrossRefGoogle Scholar
  22. 22.
    Denstedt JD, Chun SS, Miller MD, Eberwein PM. Intracorporeal lithotripsy with the Alexandrite laser. Lasers Surg Med. 1997;20:433-436.CrossRefPubMedGoogle Scholar
  23. 23.
    Tschepe J, Gundlach P, Leege N, Hopf J, Müller G, Scherer H. The endoscopic laser lithotripsy of salivary gland calculi and the problem of fiber wear. Opt Fibers Med VII SPIE. 1992;1649:254-263.Google Scholar
  24. 24.
    Pearle MS, Sech SM, Cobb CG, et al. Safety and efficacy of the Alexandrite laser for the treatment of renal and ureteral calculi. Urol. 1998;51:33-38.CrossRefPubMedGoogle Scholar
  25. 25.
    Helfmann J. Untersuchung der physikalischen Phanomene bei der Zertrummerung von Korperkonkrementen durch laserinduzierte Plasmen. In: Advances in Laser Medicine. Landsberg, Zurich: ecomed; 1992.Google Scholar
  26. 26.
    Helfmann J, Muller G. Laser lithotripsy: process overview. Med Laser Appl. 2001;16:30-37.CrossRefGoogle Scholar
  27. 27.
    Tischer CF, Koort H, Bazo A, Rasch R, Thiede C. Clinical experiences with a new frequency-doubled double-pulse Nd:YAG Laser (FREDDY) for the treatment of urolithiasis. In: Proceedings of SPIE, San Jose, California vol 4609; 2002.Google Scholar
  28. 28.
    Schafhauser W, Zorcher W, et al. Erste klinische Erfahrungen mit neuem frequenzverdoppeltem Doppelpuls Neodym:YAG Laser in der Therapie der Urolithiasis. Poster presentation at the DGU. Germany: Hamburg; 2000.Google Scholar
  29. 29.
    Stark L, Carl P, Zauner R. A new technique for Laser-Lithotripsy: FREDDY, the partially frequency-doubled double-Pulse Nd:YAG Laser. Poster presentation at: The 1st International Consultation on Stone Disease, 2001; ParisGoogle Scholar
  30. 30.
    Dubosq F, Pasqui F, Girard F, et al. Endoscopic lithotripsy and the FREDDY laser: initial experience. J Endourol. 2006;20:296-299.CrossRefPubMedGoogle Scholar
  31. 31.
    Stark L, Car P. First clinical experiences of laser lithotripsy using the partially frequency-doubled double-pulse neodymium:YAG laser (“FREDDY”) (abstract). J Urol. 2001;165:362A.Google Scholar
  32. 32.
    Vassar GJ, Chan KF, Teichman JM, et al. Holmium: YAG lithotripsy: photothermal mechanism. J Endourol. 1999;13:181-190.CrossRefPubMedGoogle Scholar
  33. 33.
    Jansen ED, Asshauer T, Frenz M, Motamedi M, Delacretaz G, Welch AJ. Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation. LasersSurg Med. 1996;18:278-293.CrossRefPubMedGoogle Scholar
  34. 34.
    Schmidlin FR, Beghuin D, Delacretaz GP, et al. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging. In: SPIE, San Jose, California 3245.123S, 1998.Google Scholar
  35. 35.
    Chan KF, Vassar GJ, Pfefer TJ, et al. Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg Med. 1999;25:22-37.CrossRefPubMedGoogle Scholar
  36. 36.
    Freiha GS, Glickman RD, Teichman JM. Holmium:YAG laser-induced damage to guidewires: experimental study. J Endourol. 1997;11:331-336.CrossRefPubMedGoogle Scholar
  37. 37.
    Teichman JM, Rogenes VJ, McIver BJ, Harris JM. Holmium:yttrium-aluminum-garnet laser cystolithotripsy of large bladder calculi. Urology. 1997;50:44-48.CrossRefPubMedGoogle Scholar
  38. 38.
    Teichman JM, Rao RD, Glickman RD, Harris JM. Holmium:YAG percutaneous nephrolithotomy: the laser incident angle matters. J Urol. 1998;159:690-694.CrossRefPubMedGoogle Scholar
  39. 39.
    Teichman JM, Rao RD, Rogenes VJ, Harris JM. Ureteroscopic management of ureteral calculi: electrohydraulic versus holmium:YAG lithotripsy. J Urol. 1997;158:1357-1361.CrossRefPubMedGoogle Scholar
  40. 40.
    Spore SS, Teichman JM, Corbin NS, Champion PC, Williamson EA, Glickman RD. Holmium: YAG lithotripsy: optimal power settings. J Endourol. 1999;13:559-566.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee H, Ryan RT, Teichman JM, et al. Stone retropulsion during holmium:YAG lithotripsy. J Urol. 2003 Mar;169(3):881-885.CrossRefPubMedGoogle Scholar
  42. 42.
    Finley DS, Petersen J, Abdelshehid C, et al. Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro. J Endourol. 2005;19:1041-1044.CrossRefPubMedGoogle Scholar
  43. 43.
    Chan KF, Lee H, Teichman JMH, Kamerer A, McGuV HS, Welch AJ. Erbium:YAG laser lithotripsy. J Urol. 2002;168:436-441.CrossRefPubMedGoogle Scholar
  44. 44.
    Lee H, Kang HW, Teichman JM, Oh J, Welch AJ. Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy. Lasers Surg Med. 2006;38:39-51.CrossRefPubMedGoogle Scholar
  45. 45.
    Lee H, Ryan RT, Teichman JM, et al. Effect of lithotripsy on holmium:YAG optical beam profile. J Endourol. 2003;17:63-67.CrossRefPubMedGoogle Scholar
  46. 46.
    Teichman JM, Chan KF, Cecconi PP, et al. Erbium: YAG versus holmium:YAG lithotripsy. J Urol. 2001;165:876-879.CrossRefPubMedGoogle Scholar
  47. 47.
    Iwai K, Shi Y, Matsuura Y, Miyagi M. Rugged hollow fiber for the infrared and its use in laser lithotripsy. In: Proceedings of SPIE, vol 4916; 2002:115–119Google Scholar
  48. 48.
    Teichman JMH, Kang W, Glickman RD, Welch AJ. Update on Erbium:YAG Lithotripsy. AIP Conference Proceedings 2007, Vol 900. London: IOP Institute of Physics Publishing Ltd.; Indianapolis, Indiana 2007:216-227.Google Scholar
  49. 49.
    Gambling WA. The rise and rise of optical fibers. IEEE J Sel Top Quant Electron. 2000;6(6)):1084.CrossRefGoogle Scholar
  50. 50.
    Nazif OA, Teichman JMH, Glickman RD, Welch AJ. Review of laser fibers: a practical guide for urologists. J Endourol. 2004;18:818-829.CrossRefPubMedGoogle Scholar
  51. 51.
    Marks AJ, Mues AC, Knudsen BE, Teichman JMH. Holmium: yttrium-aluminum-garnet lithotripsy proximal fiber failures from laser and fiber mismatch. Urology. 2008;71:1049-1051.CrossRefPubMedGoogle Scholar
  52. 52.
    Knudsen BE, Glickman RD, Stallman KJ, et al. Performance and safety of holmium: YAG laser optical fibers. J Endourol. 2005;19:1092-1097.CrossRefPubMedGoogle Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Andrew J. Marks
  • Jinze Qiu
  • Thomas E. Milner
  • Kin Foong Chan
  • Joel M. H. Teichman
    • 1
    Email author
  1. 1.Department of Urologic Sciences, St. Paul’s HosiptalUniversity of British ColumbiaVancouverCanada

Personalised recommendations