Cognitive Emotion Modeling in Natural Language Communication

  • Valeria Carofiglio
  • Fiorella de Rosis
  • Nicole Novielli


This chapter describes some psychological theories that are at the foundation of research on cognitive models of emotions, and then reviews the most significant projects in this domain in recent years. The review is focused on probabilistic dynamic models, due to the key role of uncertainty in the relationships among the variables involved: the authors' experience in this domain is discussed by outlining open problems. Two aspects are discussed in particular: how probabilistic emotion models can be validated and how the problem of emotional-cognitive inconsistency can be dealt with in probabilistic terms.


Personality Trait Basic Emotion Social Emotion Parameter Sensitivity Analysis Emotion Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P. A., & Guerrero, L. K. (1998). The bright side of relational communication: Interpersonal warmth as a social emotion. In P. A. Andersen & L. K. Guerrero (Eds.), Handbook of Communication and emotions. Research, theory, applications and contexts. New York:Academic.Google Scholar
  2. Arnold, M. B. (1960). Emotion and personality. New York: Columbia University Press.Google Scholar
  3. Ball, G., & Breese, J. (2000). Emotion and personality in a conversational agent. In S. Prevost, J. Cassell, J. Sullivan, & E. Churchill (Eds.), Embodied conversational agents (pp. 89–219). Cambridge, MA: MIT Press.Google Scholar
  4. Brady, M. (2007). Recalcitrant emotions and visual illusions. American Philosophical Quarterly 44, 3: 273–284.Google Scholar
  5. Cañamero, L. (Coordinator) (2005). Emotion in cognition and action. Deliverable D7d of the HUMAINE NoE.Google Scholar
  6. Carberry, S., & de Rosis, F. (2008). Introduction to the Special Issue of UMUAI on Affective Modeling and Adaptation 18(1–2): 1–9.Google Scholar
  7. Carofiglio, V., & de Rosis, F. (2005). In favour of cognitive models of emotions. In Proceedings of the Workshop on ‘Mind Minding Agents’, in the context of AISB05.Google Scholar
  8. Carofiglio, V., de Rosis, F., & Grassano, R. (2008). Dynamic models of mixed emotion activation. In L. Canamero & R. Aylett (Eds.), Animating expressive characters for social interactions. John Benjamin.Google Scholar
  9. Carofiglio, V., de Rosis, F., & Novielli, N. (2005) Dynamic user modeling in health promotion dialogues. In J. Tao, T. Tan, and R. W. Picard (Eds), Affective computing and intelligent interaction, first international conference, ACII 2005 (pp. 723–730), LNCS 3784, New York: Springer.CrossRefGoogle Scholar
  10. Conati, C. (2002). Probabilistic assessment of user's emotions in educational games. Applied Artificial Intelligence, Special Issue on merging cognition and affect in HCI, 16: 555– 575.Google Scholar
  11. Conati, C., & MacLaren, H. (2005). Data-driven refinement of a probabilistic model of user affect. In L. Ardissono, P. Brna, & A. Mitrovic (Eds.), User modeling (pp. 40–49), LNAI 3538. New York: Springer.Google Scholar
  12. Coupé, V. M. H., & Van der Gaag, L. C. (2002). Properties of sensitivity analysis of Bayesian belief networks. Ann Math Artif Intell, 36(4): 323–356.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Cowie, R. (2006). Emotional life, terminological and conceptual clarifications. Available at the HUMAINE Portal: final.pdf.
  14. de Rosis, F., Batliner, A., Novielli, N., & Steidl, S. (2007). “You are sooo cool Valentina!” Recognizing social attitude in speech-based dialogues with an ECA. In A. Paiva, R. Prada, & R. W. Picard (Eds.), Affective Computing and Intelligent Interaction, Second International Conference, ACII (pp. 179–190), LNCS 4738. New York: Springer.CrossRefGoogle Scholar
  15. de Rosis, F., Pelachaud, C., Poggi, I., De Carolis, B., & Carofiglio, V. (2003). From Greta's mind to her face: Modelling the dynamics of affective states in a conversational embodied agent. In International Journal of Human-Computer Studies 59(1/2): 81–118.CrossRefGoogle Scholar
  16. Ekman, P. (1999). Basic emotions. In T. Dalgleish and T. Power (Eds.), The handbook of cognition and emotion (pp. 45–60). Sussex, UK: John Wiley & Sons.CrossRefGoogle Scholar
  17. Elliott, C., & Siegle, G. (1993). Variables influencing the intensity of simulated affective states. In Reasoning about mental states — Formal theories & applications. Papers from the 1993 AAAI Spring Symposium [Technical Report SS–93–05] (pp. 58–67). Menlo Park, CA: AAAI Press.Google Scholar
  18. Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA: Stanford University Press.Google Scholar
  19. Frijda, N. H., & Mesquita, B. (2000). The influence of emotions on beliefs. In N. H. Frijda, A. S. R. Manstead, & S. Bem (Eds.), Emotions and beliefs: How feelings influence thoughts. Cambridge, UK: Cambridge University Press.Google Scholar
  20. Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103(4): 650–669.CrossRefGoogle Scholar
  21. Goldie, P. (2008). Misleading emotions. In D. G. Brun, U. Doguolu, & D. Kuenzle (Eds.), Epistemology and emotions, Ashgate, University of Zürich, Switzerland.Google Scholar
  22. Gratch, J., & Marsella, S. (2001). Tears and fears: Modelling emotions and emotional behaviors in synthetic agents. In Proceedings of the 5th International Conference on Autonomous Agents (pp. 278–285). New York: ACM Press.CrossRefGoogle Scholar
  23. Harmon Jones, E. (2000). A cognitive dissonance theory perspective on the role of emotion in the maintenance and change of beliefs and attitudes. In N. H. Frijda, A. S. R. Manstead, & S. Bem (Eds.), Emotions and beliefs. How feelings influence thoughts (pp. 185–211). Cambridge, UK: Cambridge University Press.Google Scholar
  24. Izard, C. E. (1993). Four systems for emotion activation: Cognitive and non cognitive processes. Psychological Review 100(1): 68–90.CrossRefGoogle Scholar
  25. James, W. (1984). What is an emotion? Mind 9: 188–205.Google Scholar
  26. Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty, heuristics and biases. Cambridge, UK: Cambridge University Press.Google Scholar
  27. Lazarus, R. S. (1991). Emotion and adaptation. New York: Oxford University Press.Google Scholar
  28. Mc Crae, R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality 60: 175–215.CrossRefGoogle Scholar
  29. Miceli, M., de Rosis, F., & Poggi, I. (2006). Emotional and non emotional persuasion. Applied Artificial Intelligence: An International Journal, 20(10): 849–879.CrossRefGoogle Scholar
  30. Nicholson, A. E., & Brady, J. M. (1994). Dynamic belief networks for discrete monitoring. IEEE Transactions on Systems, Men and Cybernetics, 24(11): 1593–1610.CrossRefGoogle Scholar
  31. Oatley, K., & Johnson-Laird, P. N. (1987). Towards a cognitive theory of emotions. Cognition and Emotion. 13: 29–50.Google Scholar
  32. Ortony, A., Clore, G. L., & Collins, A. (1988). The cognitive structure of emotions. Cambridge UK: Cambridge University Press.Google Scholar
  33. Pearl, J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco: Morgan Kaufmann.Google Scholar
  34. Picard, R. W. (1997). Affective computing. Cambridge, MA: MIT Press.Google Scholar
  35. Plutchik, R. (1980). A general psycho-evolutionary theory of emotion. In R. Plutchik & H. Kellerman (Eds.), Emotion: Theory, research, and experiences (pp.1:3–33). New York: Academic Press.Google Scholar
  36. Poggi, I. (2005). The goals of persuasion. Pragmatics and Cognition. 13(2): 297–336.CrossRefMathSciNetGoogle Scholar
  37. Poggi, I., & Pelachaud, C. (1998). Performative faces. Speech Communication, 26: 5–21.CrossRefGoogle Scholar
  38. Polhemus, L., Shih, L. F., & Swan, K. (2001) Virtual interactivity: The representation of social presence in an on line discussion. Annual Meeting of the American Educational Research Association. Google Scholar
  39. Prendinger, H., Descamps, S., & Ishizuka, M. (2002). Scripting affective communication with lifelike characters. Applied Artificial Intelligence, Special Issue on Merging cognition and affect in HCI, 16(7–8): 519–553.Google Scholar
  40. Prendinger, H., & Ishizuka, M. (2005). The empathic companion. A character-based interface that addresses users' affective states. AAI, 19: 267–285.Google Scholar
  41. Reilly, N. (1996). Believable social and emotional agents. PhD dissertation, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  42. Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110:145–172.CrossRefGoogle Scholar
  43. Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach. San Francisco: Morgan-Kaufman.zbMATHGoogle Scholar
  44. Scherer, K. R., Wranik, T., Sangsue, J., Tran, V., & Scherer, U. (2004). Emotions in everyday life: Probability of occurrence, risk factors, appraisal and reaction pattern. Social Science Informatics: 43(4):499–570.CrossRefGoogle Scholar
  45. Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119(1): 3–22.CrossRefGoogle Scholar
  46. van Reekum, C. M., & Scherer, K. R. (1997) Levels of processing in emotion-antecedent appraisal. In G. Matthews (Ed.), Cognitive science perspectives on personality and emotion (pp. 259– 300). Amsterdam: Elsevier Science.Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Valeria Carofiglio
    • 1
  • Fiorella de Rosis
    • 1
  • Nicole Novielli
    • 1
  1. 1.Department of InformaticsBariItaly

Personalised recommendations