Interactive Mathematical Visualisations: Frameworks, Tools and Studies

  • Kamran Sedig
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


This chapter discusses issues pertaining to the design of interactive mathematical visualizations in the context of performing epistemic activities. To this end, this chapter presents the following. It explains what mathematical visualizations are and their role in performing epistemic activities. It discusses the general benefits of making mathematical visualizations interactive. It emphasizes the need for having and using frameworks in order to describe, analyze, design, and evaluate the interactive features of mathematical visualization tools. It presents three such frameworks: micro-level interaction, micro-level interactivity, and macro-level interaction. It uses some of the elements of these frameworks to characterize and discuss five sample interactive mathematical visualization tools and to interpret the results of three usability studies. Finally, it offers some suggestions for future lines of research in this area.


Mathematical visualizations Interaction Interactivity Epistemic activities Design Micro- and macro-level frameworks Descriptive frameworks Interactive tools; Usability studies 


  1. 1.
    Burgoon, J.K., Bonito, J.A., Bengtsson, B., Cederberg, C., Lundeberg, M., & Allspach, L. (2000) Interactivity in human-computer interaction: A study of credibility, understanding, and influence. Computers in Human Behavio r, 16, 553–574.CrossRefGoogle Scholar
  2. 2.
    Card,S.K.,Mackinlay,J.D., & Shneiderman,B.(Eds.)(1999)Readings in information visualization: Using vision to think.Morgan Kaufmann Publishers.Google Scholar
  3. 3.
    Dix,A.J.& Ellis,G.(1998)Starting simple – adding value to static visualization through simple interaction.Proceedings of the 4th International Working Conference on Advanced Visual Interfaces (AVI ’98)(pp.124–134).L’Aquilla, Italy. New York: ACM Press.Google Scholar
  4. 4.
    Golightly,D.(1996)Harnessing the interface for domain learning. InM.J.Tauber(Ed.),Proceedings of the CHI ’96 Conference Companion on Human Factors in Computing Systems: Common Ground. April13–18.Vancouver, British Columbia, Canada. (pp.37–38).Google Scholar
  5. 5.
    Hannington,A.& Reed,K.(2001)Towards a taxonomy for guiding multimedia application development.Proceedings of the Ninth IEEE Asia-Pacific Software Engineering Conference,Dec. 4–6. (pp.97–106).Google Scholar
  6. 6.
    Hanson, A., Munzner, T., & Francis, G. (1994) Interactive methods for visualizable geometry. IEEE Computer, 27, (7)73–83.Google Scholar
  7. 7.
    Heller, R.S., Martin, D., Haneef, N., & Gievska-Krliu, S. (2001) Using a theoretical multimedia taxonomy framework. ACM Journal of Educational Resources in Computing, 1, 1.Google Scholar
  8. 8.
    Hitt,F.(Ed.)(2002)Representations and mathematics visualization.Proceedings of the Twenty-Fourth North American Chapter of the International Group for the Psychology of Mathematics Education.Georgia, USA.Google Scholar
  9. 9.
    Holzl, R. (1996) How does dragging affect the learning of geometry? International Journal of Computers for Mathematical Learning, 1, 169–187.CrossRefGoogle Scholar
  10. 10.
    Hult, L., Irestig, M., & Lundberg, J. (2006) Design Perspectives. Human-Computer Interaction, 21, (1)5–48.CrossRefGoogle Scholar
  11. 11.
    JVM(2007)Journal of Visual Mathematics. Available: Scholar
  12. 12.
    Kirsh, D., & Maglio, P. (1994) On distinguishing epistemic from pragmatic action. Cognitive Science, 18, 513–549.CrossRefGoogle Scholar
  13. 13.
    Morey, J., & Sedig, K. (2004) Adjusting degree of visual complexity: An interactive approach for exploring four-dimensional polytopes. The Visual Computer: International Journal of Computer Graphics, 20, 1–21. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  14. 14.
    Neth,H., &Payne,S.J.(2002)Thinking by doing? Epistemic actions in the Tower of Hanoi. InW.D.Gray, &C.D.Schunn(Eds.),Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society. (pp.691–696).Mahwah, NJ:Lawrence Erlbaum.Google Scholar
  15. 15.
    NLVM(2007)National Library of Virtual Manipulatives. Available: Scholar
  16. 16.
    Otero,N.,Rogers,Y., & du Boulay,B.(2001)Is interactivity a good thing? Assessing its benefits for learning.Proceedings of the 9th International Conference on HCI(pp.790–794).New Orleans, USA. New Jersey: Lawrence Erlbaum Associates.Google Scholar
  17. 17.
    Pedagoguery Software(2006)Tess (Version 1.70) [Computer software]. Terrace, B.C., Canada: Pedagoguery Software Inc. Available: Scholar
  18. 18.
    Scharein, R.G. (1998). Interactive topological drawing. Unpublished PhD thesis, Department of Computer Science, The University of British Columbia, Canada.Google Scholar
  19. 19.
    Scharein, R.G. (2006). KnotPlot [Computer software]. Vancouver, Canada: Hypnagogic Software. Available: Scholar
  20. 20.
    Schwan,S.(2002)Do it yourself? Interactive visualizations as cognitive tools.International Workshop on Dynamic Visualizations and Learning.July, 18–19. (pp.1501–1506).Tübingen, Germany.Google Scholar
  21. 21.
    Sedig, K., Klawe, M., & Westrom, M. (2001) Role of interface manipulation style and scaffolding on cognition and concept learning in learnware. ACM Transactions on Computer-Human Interaction, 1, (8)34–59.CrossRefGoogle Scholar
  22. 22.
    Sedig, K. & Sumner, M. (2006). Characterizing interaction with visual mathematical representations. International Journal of Computers for Mathematical Learning, 11(1), 1–55. Berlin: Springer-VerlagGoogle Scholar
  23. 23.
    Sedig, K. & Liang, H. (2006) Interactivity of visual mathematical representations: Factors affecting learning and cognitive processes. Journal of Interactive Learning Research, 17, (2)179–212.Google Scholar
  24. 24.
    Sedig, K. & Liang, H. (2008) Learner-information interaction: A macro-level framework characterizing visual cognitive tools. Journal of Interactive Learning Research, 19, (1)147–173.Google Scholar
  25. 25.
    Sedig, K., Rowhani, S., & Liang, H. (2005) Designing interfaces that support formation of cognitive maps of transitional processes: An empirical study. Interacting with Computers: The Interdisciplinary Journal of Human-Computer Interaction, 17, (4)419–452.Google Scholar
  26. 26.
    Sedig, K., Rowhani, S., Morey, J., & Liang, H. (2003) Application of information visualization techniques to the design of a mathematical mindtool: A usability study. Information Visualization, 2, (3)142–160.CrossRefGoogle Scholar
  27. 27.
    Spence,R.(2007)(2nd ed.) Information visualization: Design for interaction. Pearson/Prentice Hall.Google Scholar
  28. 28.
    Stochastic-Lab (2006). Archim (Version 1.1). Available:
  29. 29.
    Strothotte, T. (1998) Computational Visualization: Graphics, Abstraction, and Interactivity. Springer-Verlag.Berlin:Google Scholar
  30. 30.
    Stylianou, D. (2002) On the interaction of visualization and analysis: The negotiation of a visual representation in expert problem solving. Journal of Mathematical Behavior, 21, 303–317.CrossRefGoogle Scholar
  31. 31.
    Svanæs,D.(1999)Understanding interactivity: Steps to a phenomenology of Human-Computer Interaction. Unpublished doctoral Dissertation, Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar
  32. 32.
    Svendsen, G.B. (1991) The influence of interface style on problem solving. International Jzournal of Man-Machine Studies, 35, (3)379–397.CrossRefGoogle Scholar
  33. 33.
    TMF(2007)The Math Forum Library. Available: Scholar
  34. 34.
    VMM(2007)Virtual Math Museum. Available: Scholar
  35. 35.
    Webb, R. (2003) Stella: Polyhedron navigator. Symmetry: Culture and Science, 11, (1–4)231–268.Google Scholar
  36. 36.
    Weeks,J.(2005)KaleidoTile (Version 3.0) [Computer Software]. Available: Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Kamran Sedig

There are no affiliations available

Personalised recommendations