Virtual Reality-Based Interactive Scientific Visualization Environments

  • Joseph J. LaViolaJr.
  • Prabhat
  • Andrew S. Forsberg
  • David H. Laidlaw
  • Andries van Dam
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Immersive Virtual Reality (IVR) has some production applications (e.g., in vehicle design and psychiatric treatment), but it is often viewed as an expensive, over-hyped technology with insufficient and/or unproven benefit over conventional desktop systems. With steady research progress at many institutions and advances in hardware and software technologies, immersive scientific visualization is another application area in which IVR is having a positive impact and is beginning to attract more attention from the scientific community. At Brown University, we have been researching immersive scientific visualization systems by developing interactive systems with domain scientists in a variety of fields, including archaeology, biology, computational fluid dynamics (CFD), and geoscience. Anecdotal and formal evaluations show the benefits range from mild to very significant – benefits include speeding up and providing broader analysis, greater spatial understanding, enabling new types of exploration, helping in undergraduate as well as graduate courses, and debugging data acquisition methods. In this chapter, we present a number of these systems developed at Brown University and discuss the results of our experimental findings on the efficacy of IVR-based interactive visualization.

Key words

Immersive virtual reality Scientific visualization Interactive visualization 3D interfaces Surround screen display Virtual environments 


  1. 1.
    Acevedo, D., E. Vote, D. H. Laidlaw, and M. Joukowsky (2001) Archaeological Data Visualization in VR: Analysis of Lamp Finds at the Great Temple of Petra, a Case Study. In Proceedings IEEE Visualization 2001IEEE Press , 493– 496.Google Scholar
  2. 2.
    Bowman, D. (1999) Interactive Techniques for Common Tasks in Immersive Virtual Environments: Design, Evaluation and Application. PhD Thesis. Georgia Institute of Technology.Google Scholar
  3. 3.
    Bowman, D., E. Kruijff, J. LaViola, and I. Poupyrev (2004) 3D User Interfaces: Theory and PracticeAddison WesleyGoogle Scholar
  4. 4.
    Brooks, F. P., Jr. (1996) The Computer Scientist as Toolsmith II. Communications of the ACM, 39:(3)61–68.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Brooks, F. P., Jr. (1999) What’s Real About Virtual Reality? IEEE Computer Graphics and Applications, 19:(6)16–27.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bryson, S. (1996) Virtual Reality in Scientific Visualization. Communications of the ACM, 39:(5)62–71.CrossRefGoogle Scholar
  7. 7.
    Bryson, S., and C. Levit (1991) The Virtual Windtunnel: An Environment for the Exploration of Three-Dimensional Unsteady Flows. IEEE Visualization 1991, IEEE Press 17–24Google Scholar
  8. 8.
    Burns, E., Razzaque, S. Panter, A. T. Whitton, M. C. McCallus, and M. R. Brooks F. P. (2006) The Hand is Slower than the Eye: A Quantitative Exploration of Visual Dominance Over Proprioception. Presence: Teleoperators and Virtual Environments, 15:(1)1–15.CrossRefGoogle Scholar
  9. 9.
    Chung, J, M. Harris, F. Brooks, Jr., H. Fuchs et-al. (1989) Exploring Virtual Worlds with Head-Mounted Displays. In SPIE Proceedings Vol 1083 Non-Holographic True 3- Dimensional Display Technologies.Google Scholar
  10. 10.
    Cruz-Niera, C., D. Sandin, and T. Defanti (1993) Surround Screen Projection-Based Virtual Reality. In Proceedings of SIGGRAPH'93, ACM Press, 135–142Google Scholar
  11. 11.
    Demiralp, C., Jackson, C. Karelitz, D. Zhang, and S. Laidlaw D. H. (2006) CAVE and Fishtank Virtual-Reality Displays: A Qualitative and Quantitative Comparison. IEEE Transactions on Visualization and Computer Graphics, 12:(3)323–330.CrossRefGoogle Scholar
  12. 12.
    Feiner, S., and C. Beshers (1990) Worlds within Worlds: Metaphors for Exploring N-Dimensional Virtual Worlds. In Proceedings of UIST '90 (ACM Symposium on User Interface Software and Technology), 76–83.Google Scholar
  13. 13.
    Forsberg, A., J. J. LaViola Jr., and R. C. Zeleznik (1998) ErgoDesk: A Framework for Two and Three Dimensional Interaction at the ActiveDesk. In Proceedings of the Second International Immersive Projection Technology Workshop, Ames, Iowa.Google Scholar
  14. 14.
    Forsberg, A., M. Kirby, D. H. Laidlaw, G. Karniadakis, A. van Dam, and J. L. Elion (2000) Immersive Virtual Reality for Visualizing Flow Through an Artery. In Proceedings of IEEE Visualization 2000, IEEE Press, 457–460.Google Scholar
  15. 15.
    Forsberg, A., Prabhat, Haley, G. Bragdon, A. Levy, J. Fassett, C. I. Shean, D. Head J. W. III, Milkovich, and S. Duchaineau M. (2006) Adviser: Immersive Field Work for Planetary Geoscientists. IEEE Computer Graphics and Applications, 26:(4)46–54.CrossRefGoogle Scholar
  16. 16.
    Fuchs, H. (1998) Beyond the Desktop Metaphor: Toward More Effective Display, Interaction, and Tele-collaboration in the Office of the Future via a Multitude of Sensors and Displays. In 1st International Conference on Advanced Multimedia Content Processing (AMCP), Osaka, Japan.Google Scholar
  17. 17.
    Grant, B., A. Helser, and R. M. Taylor II (1998) Adding Force Display to a Stereoscopic Head-Tracked Projection Display. In Proceedings of the Virtual Reality Annual international Symposium, 81–88.Google Scholar
  18. 18.
    Head, J. W., van Dam, A. Fulcomer, S. G. Forsberg, A. Prabhat, Rosser, and G. Milkovich S. (2005) ADVISER: Immersive Scientific Visualization Applied to Mars Research and Exploration. Photogrammetric Engineering & Remote Sensing, 71:(10)1219–1225.Google Scholar
  19. 19.
    Kreiling, J., Prabhat, and R. Creton (2007a) Analysis of the Kupffer’s Vesicle in Zebrafish Embryos using a Cave Automated Virtual Environment, Developmental Dynamics, 2007 July; 236(7):1963–1969. Google Scholar
  20. 20.
    Kreiling, J., A. Crawford, and R. Creton (2007b) Quantitative Analysis of Neuronal Branching Patterns in Zebrafish Embryos, in preparation Google Scholar
  21. 21.
    Kruger, W., and Froelich B. (1994) The Responsive Workbench. IEEE Computer Graphics and Applications, 14:(3)12–14.CrossRefGoogle Scholar
  22. 22.
    LaViola, J. (2000) MSVT: A Virtual Reality-Based Multimodal Scientific Visualization Tool. In Proceedings of the Third IASTED International Conference on Computer Graphics and Imaging, 1–7.Google Scholar
  23. 23.
    LaViola, J., R. Zeleznik, D. Acevedo, and D. Keefe (2001) Hands-Free Multi-Scale Navigation in Virtual Environments. In Proceedings of the 2001 Symposium on Interactive 3D Graphics, 9–15.Google Scholar
  24. 24.
    Macedonia, M. R, D. P. Brutzman, M. J. Zyda, D. R. Pratt, P. T. Barham, J. Falby, J. Locke (1995) NPSNET: A Multi-Player 3D Virtual Environment over the Internet. In Proceedings of the 1995 Symposium on Interactive 3D Graphics, ACM Press, 93-94.Google Scholar
  25. 25.
    Martin, J. C. (1998) TYCOON: Theoretical Framework and Software Tools for Multimodal Interfaces. Intelligence and Multimodality in Multimedia Interfaces, (Ed.) J. Lee, AAAI Press.Google Scholar
  26. 26.
    Meehan, M., Razzaque, S. Insko, B. Whitton, M. Brooks F. (2005) Review of Four Studies on the Use of Physiological Reaction as a Measure of Presence in Stressful Virtual Environments. Applied Psychophysiology and Biofeedback, 30:(3)239–258.CrossRefGoogle Scholar
  27. 27.
    Ni, T., G. Schmidt, O. Staadt, M. Livingston, R. Ball, and R. May (2006) A Survey of Large High-Resolution Display Technologies, Techniques, and Applications. IEEE Virtual Reality 2006, IEEE Press, 223–234.Google Scholar
  28. 28.
    Pivkin, I., E. Hueso, R. Weinstein, D. H. Laidlaw, S. Swartz, and G. Karniadakis (2005) Simulation and Visualization of Air Flow Around Bat Wings During Flight. In Proceedings of International Conference on Computational Science, 689–694.Google Scholar
  29. 29.
    Prabhat, A. Forsberg, M. Katzourin, K. Wharton, and M. Slater (2008) Evaluation of Desktop, Fishtank and Cave Environments for Exploring Confocal Microscopy Datasets. To Appear in IEEE Transactions on Visualization and Computer Graphics.Google Scholar
  30. 30.
    Rosenberg, L. B. (1993) Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation. In Proceedings of the IEEE Annual International Symposium on Virtual Reality, IEEE Press, 76–82.Google Scholar
  31. 31.
    Sanchez, M. V., and Slater M. (2005) From Presence to Consciousness Through Virtual Reality. Nature Reviews Neuroscience 6:(4)332–339.CrossRefGoogle Scholar
  32. 32.
    Sanchez, M. V., M. Slater, A. Forsberg, and Prabhat (2008) Using Virtual Reality for Neuronal Visualization, in preparation.Google Scholar
  33. 33.
    Schulze, J. P., and A. S. Forsberg (2005a) A Comparison of a Cave and a Fish Tank VR System for Counting Biological Features in a Volume, Technical Report CS-05–02, Brown University, Department of Computer Science.Google Scholar
  34. 34.
    Schulze, J. P., A. S. Forsberg, and M. Slater (2005) Analysis of Subject Behavior in a Virtual Reality User Study. In M. Slater (Ed.), Presence 2005: The 8th Annual International Workshop on Presence, 255– 260.Google Scholar
  35. 35.
    Slater, M. (1999) Measuring Presence: A Response to the Witmer and Singer Questionnaire. Presence: Teleoperators and Virtual Environments, 8:(5)560–566.CrossRefGoogle Scholar
  36. 36.
    Slater, M., Usoh, and M. Steed A. (1994) Depth of Presence in Virtual Environments. Presence, 3:130–144.Google Scholar
  37. 37.
    Sobel, J, Forsberg, A. Laidlaw, D. H. Zeleznik, R. Keefe, D. Pivkin, I. Karniadakis, G. Richardson, and P. Swartz S. (2004) Particle Flurries: Synoptic 3D Pulsatile Flow Visualization. IEEE Computer Graphics and Applications, 24:(2)76–85.CrossRefGoogle Scholar
  38. 38.
    Sutherland, I (1968). A Head-Mounted Three Dimensional Display. In Fall Joint Computer Conference, AFIPS Conference Proceedings, 757–764.Google Scholar
  39. 39.
    Taylor II, R. M., W. Robinett, V. L. Chi, F. P. Brooks, Jr., W. V. Wright, R. S. Williams, and E. J. Snyder (1993) The Nanomanipulator: A Virtual-Reality Interface for a Scanning Tunneling Microscope. Computer Graphics (Proceedings of SIGGRAPH 93), ACM Press, 127–134.Google Scholar
  40. 40.
    Vote, E, Acevedo, D. Laidlaw, and D. H. Joukowsky M. (2002) Discovering Petra: Archaeological Analysis in VR. IEEE Computer Graphics and Applications, 22:(5)38–50.CrossRefGoogle Scholar
  41. 41.
    Wallace, F, Anshus, O. J. Bi, P. Chen, H. Chen, Y. Clark, D. Cook, P. Finkelstein, A. Funkhouser, T. Gupta, A. Hibbs, M. Zhiyan Liu, K. L. Samanta, R. Sukthankar, and R. Troyanskaya O. (2005) Tools and Applications for Large-Scale Display Walls. IEEE Computer Graphics and Applications, 25:(4)24–33.CrossRefGoogle Scholar
  42. 42.
    Ware, C., and D. R. Jessome (1988) Using the Bat: A Six-Dimensional Mouse for Object Placement. In Proceedings of Graphics Inteface’88, 119– 124.Google Scholar
  43. 43.
    Ware, C., K. Arthur, and K. S. Booth (1993) Fishtank Virtual Reality. In Proceedings of INTERCHI’93, 37–42.Google Scholar
  44. 44.
    Wartell, Z., W. Ribarsky, and L. Hodges (1999) Third-Person Navigation of Whole-Planet Terrain in a Head-Tracked Stereoscopic Environment. In Proceedings of the IEEE Virtual Reality, IEEE Press, 141–148.Google Scholar
  45. 45.
    Welch, G, and Foxlin E. (2002) Motion Tracking: No Silver Bullet, but a Respectable Arsenal. IEEE Computer Graphics and Applications, Special Issue on “Tracking”, 22:(6)24–38.CrossRefGoogle Scholar
  46. 46.
    Zeleznik, R. C., K. P. Herndon, and J. F. Hughes (1996) SKETCH: An Interface for Sketching 3D scenes. In Proceedings of SIGGRAPH’96, ACM Press, 163–170.Google Scholar
  47. 47.
    Zeleznik, R. C., J. LaViola, D. Acevedo, and D. Keefe (2002) Pop-Through Buttons for Virtual Environment Navigation and Interaction. In Proceedings of Virtual Reality 2002, IEEE Press, 127–134.Google Scholar
  48. 48.
    Zhang, S., C. Demiralp, D. Keefe, M. DaSilva, B. D. Greenberg, P. J. Basser, C. Pierpaoli, E. A. Chiocca, T. S. Deisboeck, and D. H. Laidlaw (2001) An Immersive Virtual Environment for DT-MRI Volume Visualization Applications: A Case Study. In Proceedings of IEEE Visualization, IEEE Press 437–440.Google Scholar
  49. 49.
    Zhang, S, Demiralp, and C. Laidlaw D. H. (2003) Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces. IEEE Transactions on Visualization and Computer Graphics, 9:(4)454–462.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Joseph J. LaViolaJr.
  • Prabhat
  • Andrew S. Forsberg
  • David H. Laidlaw
  • Andries van Dam

There are no affiliations available

Personalised recommendations