Non-invasive Brain-Computer Interfaces for Semi-autonomous Assistive Devices

  • Bernhard Graimann
  • Brendan Allison
  • Christian Mandel
  • Thorsten Lüth
  • Diana Valbuena
  • Axel Gräser


A brain-computer interface (BCI) transforms brain activity into commands that can control computers and other technologies. Because brain signals recorded non-invasively from the scalp are difficult to interpret, robust signal processing methods have to be applied. Although state-of-the-art signal processing methods are used in BCI research, the output of a BCI is still unreliable, and the information transfer rates are very small compared with conventional human interaction interfaces. Therefore, BCI applications have to compensate for the unreliability and low information content of the BCI output. Controlling a wheelchair or a robotic arm would be slow, frustrating, or even dangerous if it solely relied on BCI output. Intelligent devices, however, such as a wheelchair that can automatically avoid collisions and dangerous situations or a service robot that can autonomously conduct goal-directed tasks and independently detect and resolve safety issues, are much more suitable for being controlled by an “unreliable” control signal like that provided by a BCI.


Motor Imagery Brain Computer Interface Rehabilitation Robot Information Transfer Rate Brain Computer Interface System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, B., Graimann, B., and Gräser, A. (2007a). Why use a BCI if you are healthy? In Proceedings of the International Conference on Advances in Computer Entertainment, pages 7–11, Salzburg, Austria, 13–15 June.Google Scholar
  2. Allison, B. Z. and Pineda, J. A. (2003). ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2):110–113.CrossRefGoogle Scholar
  3. Allison, B. Z. and Pineda, J. A. (2006). Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. International Journal of Psychophysiology, 59(2):127–140.CrossRefGoogle Scholar
  4. Allison, B. Z., Wolpaw, E. W., and Wolpaw, A. R. (2007b). Brain-computer interface systems: progress and prospects. Expert Review of Medical Devices, 4(4):463–474.CrossRefGoogle Scholar
  5. Birbaumer, N. and Cohen, L. G. (2007). Brain-computer interfaces: communication and restoration of movement in paralysis. Journal of Physiology-London, 579(3):621–636.CrossRefGoogle Scholar
  6. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K. R., and Curio, G. (2007). The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage, 37(2):539–550.CrossRefGoogle Scholar
  7. Cook, A. and Hussey, S. (2002). Assistive Technologies: Principles and Practice. Mosby, St. Louis, 2nd edition.Google Scholar
  8. Donchin, E., Spencer, K. M., and Wijesinghe, R. (2000). The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Transactions on Rehabilitation Engineering, 8(2):174–179.CrossRefGoogle Scholar
  9. Dornhege, G., Blankertz, B., Curio, G., and Müller, K. R. (2004). Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Transactions on Biomedical Engineering, 51(6):993–1002.CrossRefGoogle Scholar
  10. Dornhege, G., Millan, J., Hinterberger, T., McFarland, D. J., and Müller, K. R., editors (2007). Toward Brain-Computer Interfacing. MIT Press, Cambridge, MA.Google Scholar
  11. Farwell, L. and Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6):510–523.CrossRefGoogle Scholar
  12. Fonseca, C., Cunha, J., and Martins, R. (2007). A novel dry active electrode for EEG recording. IEEE Transactions on Biomedical Engineering, 54:162–165.CrossRefGoogle Scholar
  13. Friman, O., Lüth, T., Volosyak, I., and Gröser, A. (2007a). Spelling with steady-state visual evoked potentials. In Proceedings of the 3rd International IEEE/EMBS Conference on Neural Engineering (CNE’07), pages 510–523, Hawaii, 2–5 May 2007.Google Scholar
  14. Friman, O., Volosyak, I., and Gröser, A. (2007b). Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Transactions on Biomedical Engineering, 54(4):742–750.CrossRefGoogle Scholar
  15. Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Computer Science and Scientific Computing. Academic Press, Boston, 2nd edition.Google Scholar
  16. Gao, X., Xu, D., Cheng, M., and Gao, S. (2003). A BCI-based environmental controller for the motion-disabled. IEEE Transactions on Neural System and Rehabilitation Engineering, 11(2):137–140.CrossRefGoogle Scholar
  17. Graimann, B. (2006). Event-related (de)synchronization in bioelectrical brain signals and its use in brain-computer communication. PhD thesis, Habilitationsschrift: Graz University of Technology.Google Scholar
  18. Graimann, B., Allison, B., and Gröser, A. (2007). New applications for non-invasive brain-computer interfaces and the need for engaging training environments. In Proceedings of the International Conference on Advances in Computer Entertainment, pages 25–28, Salzburg, Austria, 13–15 June.Google Scholar
  19. Graimann, B., Huggins, J. E., Levine, S. P., and Pfurtscheller, G. (2004). Toward a direct brain interface based on human subdural recordings and wavelet-packet analysis. IEEE Transactions on Biomedical Engineering, 51(6):954–962.CrossRefGoogle Scholar
  20. Graimann, B. and Pfurtscheller, G. (2006). Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain. In Neuper, C. and Klimesch, W., editors, Event-related Dynamics of Brain Oscillations., Progress in Brain Research, pages 79–97. Elsevier, Amsterdam.Google Scholar
  21. Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., and Pfurtscheller, G. (2003). How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2):145–147.CrossRefGoogle Scholar
  22. Hill, J., Lal, T., Tangermann, M., Hinterberger, T., Widman, G., and Elger, C. (2007). Classifying Event-Related Desynchronization in EEG, ECoG, and MEG Signals. In Dornhege, G.,Millan, J., Hinterberger, T., McFarland, D. J., and Müller, K. R., editors, Toward Brain-Computer Interfacing, pages 235–259. MIT Press, Cambridge, MA.Google Scholar
  23. Hillman, M. (2003). Rehabilitation robotics from past to present–a historical perspective. In Proceedings of the 8th International Conference on Rehabilitation Robotics (ICORR’03), pages 101–105, Daelon, Korea.Google Scholar
  24. Ivlev, O., Martens, C., and Gröser, A. (2005). Rehabilitation robots FRIEND-I and FRIEND-II with the dexterous lightweight manipulator. In Prcoceedings of the 3rd International Congress on Restoration of (Wheeled) Mobility in SCI Rehabilitation, volume 5, pages 111–123, Amsterdam, The Netherlands, 19–21 April.Google Scholar
  25. Kleber, B. and Birbaumer, N. (2005). Direct brain communication: neuroelectric and metabolic approaches at Tübingen. Cognitive Processing, 6:65–74.CrossRefGoogle Scholar
  26. Krieg-Brückner, B., Frese, U., Lüttich, K., Mandel, C., Mossakowski, T., and Ross, R. (2005). Specification of an ontology for route graphs. In Freska, C., Knauff, M., Krieg-Brückner, B., Nebel, B., and Barkowsky, T., editors, Spatial Cognition IV, volume 3343 of Lecture Notes in Artificial Intelligence, pages 390–412. Springer, Berlin, Heidelberg.Google Scholar
  27. Lemm, S., Blankertz, B., Curio, G., and Müller, K. R. (2005). Spatio-spectral filters for improving the classification of single trial EEG. IEEE Transactions on Biomedical Engineering, 52(9):1541–1548.CrossRefGoogle Scholar
  28. Levine, S. P., Bell, D. A., Jaros, L. A., Simpson, R. C., Koren, Y., and Borenstein, J. (1999). The NavChair assistive wheelchair navigation system. IEEE Transactions on Rehabilitation Engineering, 7(4):443–451.CrossRefGoogle Scholar
  29. Lüth, T., Ojdanic, D., Friman, O., Prenzel, O., and Gröser, A. (2007). Low-level control in a semi-autonmous rehabilitation robotic system via a brain-computer interface. In Proceedings of the 10th International Conference on Rehabilitation Robotics (ICORR’07), pages 721–728, Noordwijk, Netherlands, 13–15 June.Google Scholar
  30. Mandel, C. and Frese, U. (2007). Comparison of wheelchair user interfaces for the paralysed: head-joystick vs. verbal path selection from an offered route-set. In Proceedings of the 3rd European Conference on Mobile Robots (ECMR’07), pages 217–222, Freiburg, Germany, 19–21 September.Google Scholar
  31. Mandel, C., Frese, U., and Roefer, T. (2006). Robot navigation based on the mapping of coarse qualitative route descriptions to route graphs. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’06), pages 205–210, Beijing, China, 9–13 October.Google Scholar
  32. Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information. W.H. Freeman, San Francisco.Google Scholar
  33. McFarland, D. J., McCane, L. M., David, S. V., and Wolpaw, J. R. (1997). Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology, 103(3):386–394.CrossRefGoogle Scholar
  34. McFarland, D. J., Sarnacki, W. A., and Wolpaw, J. R. (2003). Brain-computer interface (BCI) operation: optimizing information transfer rates. Biological Psychology, 63(3):237–251.CrossRefGoogle Scholar
  35. Middendorf, M., McMillan, G., Calhoun, G., and Jones, K. S. (2000). Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 8(2):211–214.CrossRefGoogle Scholar
  36. Millan, J., Renkens, F., Mourino, J., and Gerstner, W. (2004). Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Transactions on Biomedical Engineering, 51(6):1026–1033.CrossRefGoogle Scholar
  37. Müller, G. R., Neuper, C., Rupp, R., Keinrath, C., Gerner, H. J., and Pfurtscheller, G. (2003a). Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neuroscience Letters, 340(2):143–147.CrossRefGoogle Scholar
  38. Müller, K., Krauledat, M., Dornhege, G., Curio, G., and Blankertz, B. (2004). Machine learning techniques for brain-computer interfaces. Biomed Tech, 49(1):11–22.CrossRefGoogle Scholar
  39. Müller, K. R., Anderson, C. W., and Birch, G. E. (2003b). Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2):165–169.CrossRefGoogle Scholar
  40. Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., and Rupp, R. (2005). EEG-based neuroprosthesis control: a step towards clinical practice. Neuroscience Letters, 382(1–2):169–174.CrossRefGoogle Scholar
  41. Naeem, M., Brunner, C., Leeb, R., Graimann, B., and Pfurtscheller, G. (2006). Seperability of four-class motor imagery data using independent components analysis. Journal of Neural Engineering, 3(3):208–216.CrossRefGoogle Scholar
  42. Pfurtscheller, G., Graimann, B., and Neuper, C. (2006a). EEG-based Brain-Computer Interface Systems and Signal Processing. In Akay, M., editor, Encyclopedia of Biomedical Engineering, volume 2, pages 1156–1166. John Wiley & Sons, Hoboken, NJ.Google Scholar
  43. Pfurtscheller, G., Müzsller-Putz, G. R., Schlogl, A., Graimann, B., Scherer, R., Leeb, R., Brunner, C., Keinrath, C., Lee, F., Townsend, G., Vidaurre, C., and Neuper, C. (2006b). 15 years of BCI research at Graz University of Technology: current projects. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2):205–210.CrossRefGoogle Scholar
  44. Prenzel, O. (2005). Semi-autonomous object anchoring for service-robots. Methods and Applications in Automation, 1:57–68.Google Scholar
  45. Prenzel, O., Martens, C., Cyriacks, M., Wang, C., and Gröser, A. (2007). System-controlled user interaction within the service robotic control architecture MASSiVE. Robotica, 25(2):237–244.CrossRefGoogle Scholar
  46. Ramoser, H., Müller-Gerking, J., and Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4):441–446.CrossRefGoogle Scholar
  47. Sellers, E. W. and Donchin, E. (2006). A P300-based brain-computer interface: initial tests by ALS patients. Clinical Neurophysiology, 117(3):538–548.CrossRefGoogle Scholar
  48. Sellers, E. W., Krusienski, D. J., McFarland, D. J., Vaughan, T. M., and Wolpaw, J. R. (2006). A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biological Psychology, 73(3):242–252.CrossRefGoogle Scholar
  49. Simpson, R. (2005). Smart wheelchairs: a literature review. Journal of Rehabilitation Research and Development, 42(4):423–436.CrossRefGoogle Scholar
  50. Valbuena, D., Cyriacks, M., Friman, O., Volosyak, I., and Gröser, A. (2007). Brain-computer interface for high-level control of rehabilitation robotic systems. In Proceedings of the 10th International Conference on Rehabilitation Robotics (ICORR’07), pages 619–625, Noordwijk, Netherlands, 13–15 June. IEEE Press.Google Scholar
  51. Vidal, J. J. (1973). Toward direct brain-computer communication. Annual Review of Biophysics and Bioengineering, 2:157–180.CrossRefGoogle Scholar
  52. Wolpaw, J. R. (2007). Brain-computer interfaces as new brain output pathways. Journal ofPhysiology, 579(Pt 3):613–619.CrossRefGoogle Scholar
  53. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6):767–791.CrossRefGoogle Scholar
  54. Wolpaw, J. R., McFarland, D. J., Neat, G. W., and Forneris, C. A. (1991). An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 78(3):252–259.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Bernhard Graimann
    • 1
  • Brendan Allison
    • 2
  • Christian Mandel
    • 3
  • Thorsten Lüth
    • 2
  • Diana Valbuena
    • 2
  • Axel Gräser
    • 2
  1. 1.Institute of AutomationUniversity of BremenBremenGermany
  2. 2.Institute of AutomationUniversity of BremenBremenGermany
  3. 3.Institute of Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations