Advertisement

Systemic and Pulmonary Venous Anomalies

  • Theresa Ann TacyEmail author
Chapter

Abstract

Assessment of systemic and pulmonary venous anatomy represents a vital part of the echocardiographic evaluation of any patient with suspected congenital heart disease (CHD). Systemic and pulmonary venous anomalies can occur as known associations with both simple and complex forms of CHD, and their presence (or absence) can have important clinical implications. Moreover, knowledge of systemic and pulmonary venous return is necessary for the accurate classification of some of the more complex forms of CHD, and for understanding the underlying physiology in such patients. Anyone performing echocardiographic evaluation of possible systemic/pulmonary venous anomalies should have a comprehensive understanding of the normal anatomy of both systems, as well as the more common abnormalities involving each system and associated hemodynamic alterations. Transesophageal echocardiography (TEE) is well suited for evaluation of both systemic and pulmonary venous anomalies, due to the proximity of the esophagus and transducer to the sites of venous return and to the atrial chambers. This chapter presents a thorough discussion of congenital systemic and pulmonary venous anomalies and their evaluation by TEE.

Keywords

Transesophageal echocardiography Pulmonary venous anomalies Total anomalous pulmonary venous connection Partial anomalous pulmonary venous connection Systemic venous anomalies Intraoperative monitoring 

Supplementary material

Video 6.1

Transesophageal echocardiographic image of the right atrium viewed in the midesophageal bicaval view. The superior vena cava is seen superiorly with a small amount of contrast, and the right pulmonary artery is seen in cross section as it courses behind the SVC. The broad-based right atrial appendage is seen anteriorly (MOV 1409 kb)

Video 6.2

Image of the left atrium in the midesophageal two chamber view. The left upper pulmonary vein is seen, and directly anterior to this is the entrance of the narrow based left atrial appendage into the left atrium (MOV 1153 kb)

Video 6.3

The hepatic veins can be seen entering the right atrium in a nearly coronal plane from a transgastric window (MOV 5110 kb)

Video 6.4

In this view the TEE imaging probe is advanced to a low esophageal position to display the lower esophageal inferior vena cava long axis view as the probe angle is adjusted to the sagittal (90°) plane. The inferior vena cava (IVC) is demonstrated and a hepatic vein is seen joining the IVC anteriorly and superiorly (MOV 3091 kb)

125052_1_En_6_MOESM5_ESM.mov (629 kb)
Video 6.5 In the midesophageal four chamber view the probe has been retroflexed within the esophagus to demonstrate the coronary sinus and its relation to the left atrium (MOV 628 kb)
125052_1_En_6_MOESM6_ESM.mov (773 kb)
Video 6.6 In this image at 0°, the probe has been withdrawn and rotated to the left (counterclockwise) from the midesophageal four chamber view to demonstrate the relationship of the descending aorta (DAO), left pulmonary vein (LPV), and left atrial appendage (LAA) in a posterior to anterior position (MOV 773 kb)
125052_1_En_6_MOESM7_ESM.mov (1.3 mb)
Video 6.7 In this image at 0°, the probe has been rotated rightward (clockwise) in the midesophageal four chamber view and advanced slightly within the esophagus to demonstrate the entrance of the right lower pulmonary vein to the left atrium (MOV 1369 kb)
125052_1_En_6_MOESM8_ESM.mov (1.4 mb)
Video 6.8 A view of the left pulmonary veins from the midesophageal position as they enter the left atrium using an imaging plane of approximately 125° (MOV 1391 kb)
125052_1_En_6_MOESM9_ESM.mov (738 kb)
Video 6.9 A view of the right pulmonary veins from the midesophageal position, with color flow mapping as they join the left atrium. This view can be obtained with rightward rotation of the probe, using an imaging plane of approximately 30°–50° (MOV 737 kb)
Video 6.10

Midesophageal two chamber view displaying the left atrium and left ventricle. A dilated coronary sinus is demonstrated in its short axis (MOV 2485 kb)

Video 6.11

View of the coronary sinus in its longitudinal plane. This receives a left superior vena cava as demonstrated by color flow mapping. This view can be obtained by initially obtaining a short axis view of the coronary sinus and rotating the transducer to 60°–80° (MOV 4702 kb)

125052_1_En_6_MOESM12_ESM.mov (548 kb)
Video 6.12 Midesophageal two chamber view demonstrating a coronary sinus atrial septal defect (MOV 548 kb)
125052_1_En_6_MOESM13_ESM.mov (430 kb)
Video 6.13 Midesophageal bicaval view demonstrates the commitment of a right superior vena cava to the left atrium. Color Doppler demonstrates flow from the superior vena cava entering both the left atrium (red) and right atrium (blue) (MOV 429 kb)
Video 6.14

Equivalent view as depicted in Video 6.4 in a patient with interrupted inferior vena cava with azygous continuation. In this view only the hepatic veins are seen (MOV 1501 kb)

Video 6.15

In this view the TEE probe is in the low retrocardiac position, and has been rotated posteriorly in the sagittal plane. Two vascular structures are seen coursing adjacent to each other. Color Doppler demonstrates pulsatile flow directed caudally (the descending aorta) anteriorly and a second posterior structure, which has venous flow traveling towards cranially (the azygous vein) (MOV 3224 kb)

Video 6.16

View of the azygous vein as it travels towards the superior vena cava. At 90°, the distal azygous vein can be seen coursing over the right pulmonary artery seen in its short axis. This is a modified view obtained at the level of the mid esophagus (MOV 1065 kb)

Video 6.17

From the midesophageal ascending aortic short axis view (angle 0°) a teardrop shape of the superior vena cava indicates an anomalous pulmonary venous connection, in this case of a right upper vein to the superior vena cava (MOV 864 kb)

125052_1_En_6_MOESM18_ESM.mov (451 kb)
Video 6.18 Deep transgastric view in the sagittal plane demonstrating by color Doppler turbulent flow from a right lower pulmonary vein as it drains into the posterior aspect of the inferior vena cava above the level of the diaphragm (MOV 450 kb)
Video 6.19

Transesophageal echocardiogram in an infant with hypoplastic left heart syndrome in the midesophageal four chamber view demonstrating the usual appearance for the septum primum initially however as one withdraws the probe within the esophagus, the septum is seen shifting to a more leftwards position (MOV 3564 kb)

Video 6.20

This view is oriented to identify the right pulmonary veins. Close relationship between pulmonary veins (red flow) and pulmonary arteries (blue flow) is evident here—the pulmonary artery being directly anterior and usually slightly superior to the pulmonary veins (MOV 1500 kb)

Video 6.21

The video represents a representative sweep in an infant with total anomalous pulmonary venous connection to the left innominate vein. The exam is initiated at the midesophageal four chamber view. From this window, modified views at the level of the mid esophagus display the right upper and lower pulmonary veins (RUPV, RLPV) and left pulmonary veins (LPVs) are seen returning to a large horizontal confluence. A large vertical vein (VV) arises from the left side of the confluence and travels anteriorly and superiorly, coursing over the left pulmonary artery (LPA) to insert into the left innominate vein (Inn V). The length of the vertical vein is best seen in a sagittal plane, with the midesophageal ascending aortic and upper esophageal aortic arch short axis views, and leftward rotation of the probe. There is no obstruction at any point to pulmonary venous return. A catheter placed in the left internal jugular vein is seen in the vertical vein by two-dimensional imaging. On this video, prominent electrocautery and Doppler mirror image artifacts are seen (MPG 38454 kb)

Video 6.22

In this midesophageal four chamber view a pulmonary venous confluence is shown adjacent to the left atrium (circular structure) (MOV 3395 kb)

Video 6.23

Orthogonal view from that shown in Video 6.22. Color Doppler interrogation of pulmonary venous confluence in infant with total anomalous pulmonary venous connection as displayed in the long axis. The blue flow away from the transducer suggests an infradiaphragmatic course (MOV 2111 kb)

Video 6.24

Midesophageal four chamber view with clockwise transducer rotation demonstrating direct drainage of a right lower pulmonary vein to the right atrium (MOV 1787 kb)

Video 6.25

In this midesophageal four chamber view a dilated coronary sinus is seen (MOV 3372 kb)

125052_1_En_6_MOESM26_ESM.mov (1.1 mb)
Video 6.26 This is an image specifically examining the right pulmonary veins after direct anastomosis of the pulmonary venous confluence to the left atrium. Torsion of the anastomosis resulted in localized narrowing of the right upper pulmonary vein (MOV 1157 kb)
Video 6.27

Corresponding image to that displayed in Video 6.26 with color flow Doppler across right upper pulmonary vein demonstrating narrowing resulting from torsion of the pulmonary venous confluence to the left atrial anastomosis (MOV 1017 kb)

125052_1_En_6_MOESM28_ESM.mov (1.1 mb)
Video 6.28 In this midesophageal four chamber view the anastomotic site between the pulmonary venous confluence and left atrium is well seen. This appears widely patent by two-dimensional imaging (MOV 1144 kb)
125052_1_En_6_MOESM29_ESM.mov (966 kb)
Video 6.29 Modified midesophageal bicaval view performed post repair of sinus venosus atrial septal defect. Flow disturbance was seen near the cardiac end of the superior vena cava suggestive of obstruction. This led to further investigation and revision of the repair (MOV 965 kb)

References

  1. 1.
    Geva T, Van Praagh S. Abnormal systemic venous connections. In: Allen HD, Driscoll DJ, Shaddy RE, Feltes TF, editors. Moss and Adams heart disease in infants, children, and adolescents. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 792–817.Google Scholar
  2. 2.
    Geva T, Van Praagh S. Anomalies of the pulmonary veins. In: Allen HD, Driscoll DJ, Shaddy RE, Feltes TF, editors. Moss and Adams heart disease in infants, children, and adolescents. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 781–92.Google Scholar
  3. 3.
    Loogen F, Rippert R. Anomalies of the large body and lung veins. Z Kreislaufforsch. 1958;47:677–90.PubMedGoogle Scholar
  4. 4.
    Stumper O, Vargas-Barron J, Rijlaarsdam M, et al. Assessment of anomalous systemic and pulmonary venous connections by transoesophageal echocardiography in infants and children. Br Heart J. 1991;66:411–8.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ho SY. Pulmonary vein ablation in atrial fibrillation: does anatomy matter? J Cardiovasc Electrophysiol. 2003;14:156–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Stanford W, Breen JF. CT evaluation of left atrial pulmonary venous anatomy. Int J Cardiovasc Imaging. 2005;21:133–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Masani ND. Transoesophageal echocardiography in adult congenital heart disease. Heart. 2001;86 Suppl 2:II30–40.PubMedGoogle Scholar
  8. 8.
    Ammash NM, Seward JB, Warnes CA, et al. Partial anomalous pulmonary venous connection: diagnosis by transesophageal echocardiography. J Am Coll Cardiol. 1997;29:1351–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Shanewise JS, Cheung AT, Aronson S, et al. ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. J Am Soc Echocardiogr. 1999;12:884–900.PubMedCrossRefGoogle Scholar
  10. 10.
    Meadows WR, Sharp JT. Persistent left superior vena cava draining into the left atrium without arterial unsaturation. Am J Cardiol. 1965;16:273–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Bunger PC, Neufeld DA, Moore JC, et al. Persistent left superior vena cava and associated structural and functional considerations. Angiology. 1981;32:601–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Cobb RJ, Mendelson DS, Norton KI. Persistent left superior vena cava: case report and review. Mt Sinai J Med. 1987;54:171–3.PubMedGoogle Scholar
  13. 13.
    Campbell M, Deuchar DC. The left-sided superior vena cava. Br Heart J. 1954;16:423–39.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Cha EM, Khoury GH. Persistent left superior vena cava. Radiologic and clinical significance. Radiology. 1972;103:375–81.PubMedGoogle Scholar
  15. 15.
    Gandy K, Hanley F. Management of systemic venous anomalies in the pediatric cardiovascular surgical patient. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006;9:63–74.Google Scholar
  16. 16.
    Iyer GK, Van Arsdell GS, Dicke FP, et al. Are bilateral superior vena cavae a risk factor for single ventricle palliation? Ann Thorac Surg. 2000;70:711–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Reddy VM, McElhinney DB, Moore P, et al. Outcomes after bidirectional cavopulmonary shunt in infants less than 6 months old. J Am Coll Cardiol. 1997;29:1365–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Kaneda T, Onoe M, Matsuda M, et al. Patent levoatrial cardinal vein without left heart hypoplasia. Ann Thorac Surg. 2006;81:740–2.PubMedCrossRefGoogle Scholar
  19. 19.
    Bernstein HS, Moore P, Stanger P, et al. The levoatriocardinal vein: morphology and echocardiographic identification of the pulmonary-systemic connection. J Am Coll Cardiol. 1995;26:995–1001.PubMedCrossRefGoogle Scholar
  20. 20.
    Snider AR, Ports TA, Silverman NH. Venous anomalies of the coronary sinus: detection by M-mode, two-dimensional and contrast echocardiography. Circulation. 1979;60:721–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Stewart JA, Fraker TDJ, Slosky DA, et al. Detection of persistent left superior vena cava by two-dimensional contrast echocardiography. J Clin Ultrasound. 1979;7:357–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Winter FS. Persistent left superior vena cava; survey of world literature and report of thirty additional cases. Angiology. 1954;5:90–132.PubMedCrossRefGoogle Scholar
  23. 23.
    Utley JR, Mobin-Uddin K. Absent left innominate vein: sign of persistent left superior vena cava. Ann Thorac Surg. 1975;19:101–2.PubMedCrossRefGoogle Scholar
  24. 24.
    Jureidini SB, Hormann JW, Williams J, et al. Morphometric assessment of the innominate vein in the prediction of persistent left superior vena cava. J Am Soc Echocardiogr. 1998;11:372–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Huhta JC, Smallhorn JF, Macartney FJ, et al. Cross-sectional echocardiographic diagnosis of systemic venous return. Br Heart J. 1982;48:388–403.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Choi JY, Anderson RH, Macartney FJ. Absent right superior caval vein (vena cava) with normal atrial arrangement. Br Heart J. 1987;57:474–8.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lenox CC, Zuberbuhler JR, Park SC, et al. Absent right superior vena cava with persistent left superior vena cava: implications and management. Am J Cardiol. 1980;45:117–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Marin-Garcia J, Sanmarti J, Moller JH. Congenital absence of the right superior vena cava: report of two cases. Eur J Cardiol. 1978;7:293–7.PubMedGoogle Scholar
  29. 29.
    Choi JY, Jung MJ, Kim YH, et al. Anomalous subaortic position of the brachiocephalic vein (innominate vein): an echocardiographic study. Br Heart J. 1990;64:385–7.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Gerlis LM, Ho SY. Anomalous subaortic position of the brachiocephalic (innominate) vein: a review of published reports and report of three new cases. Br Heart J. 1989;61:540–5.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Nii M, Matsuoka S, Mori K, et al. Digital subtraction angiography, magnetic resonance imaging and echocardiographic findings in patients with an anomalous subaortic left brachiocephalic vein. Cardiol Young. 1997;7:172–7.Google Scholar
  32. 32.
    Moller JH, Nakib A, Anderson RC, et al. Congenital cardiac disease associated with polysplenia. A developmental complex of bilateral “left-sidedness”. Circulation. 1967;36:789–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Davis WH, Jordaan FR, Snyman HW. Persistent left superior vena cava draining into the left atrium, as an isolated anomaly. Am Heart J. 1959;57:616–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Raghib G, Ruttenberg H, Anderson R, et al. Termination of the left superior vena cava in left atrium, atrial septal defect and absence of the coronary sinus. A developmental complex. Circulation. 1965;31:906–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Blank E, Zuberbuhler JR. Left to right shunt through a left atrial left superior vena cava. Am J Roentgenol Radium Ther Nucl Med. 1968;103:87–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Taybi H, Kurlander G, Lurie P, et al. Anomalous systemic venous connection to the left atrium or to a pulmonary vein. Am J Roentgenol Radium Ther Nucl Med. 1965;94:62–77.PubMedGoogle Scholar
  37. 37.
    Shumacker HBJ, King H, Waldhausen JA. The persistent left superior vena cava. Surgical implications, with special reference to caval drainage into the left atrium. Ann Surg. 1967;165:797–805.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidt KG, Silverman NH. Cross-sectional and contrast echocardiography in the diagnosis of interatrial communications through the coronary sinus. Int J Cardiol. 1987;16:193–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Rose AG, Beckman CB, Edwards JE. Communication between coronary sinus and left atrium. Br Heart J. 1974;36:182–5.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Freedom RM, Culham JA, Rowe RD. Left atrial to coronary sinus fenestration (partially unroofed coronary sinus). Morphological and angiocardiographic observations. Br Heart J. 1981;46:63–8.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Beckman CB, Moller JH, Edwards JE. Alternate pathways to pulmonary venous flow in left-sided obstructive anomalies. Circulation. 1975;52:509–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Akalin H, Uysalel A, Ozyurda U, et al. The triad of persistent left superior vena cava connected to the coronary sinus, right superior vena cava draining into the left atrium, and atrial septal defect: report of a successful operation for a rare anomaly. J Thorac Cardiovasc Surg. 1987;94:151–3.PubMedGoogle Scholar
  43. 43.
    Arora G, Carlson KM, Neish SR. Anomalies of systemic venous return: right superior vena cava draining to the left atrium. Pediatr Cardiol. 2005;26:115–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Leys D, Manouvrier J, Dupard T, et al. Right superior vena cava draining into the left atrium with left superior vena cava draining into the right atrium. Br Med J (Clin Res Ed). 1986;293:855.CrossRefGoogle Scholar
  45. 45.
    Mukhopadhyay S, Mehta V, Yusuf J, et al. Anomalous drainage of the right superior vena cava into the left atrium. Indian Heart J. 2004;56:70–1.PubMedGoogle Scholar
  46. 46.
    Oppido G, Pace Napoleone C, Turci S, et al. Right superior vena cava draining in the left atrium: anatomical, embryological, and surgical considerations. Ann Thorac Surg. 2006;81:2313–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Recto MR, Sobczyk WL, Yeh TJ. Right superior vena cava draining predominantly into the left atrium causing cyanosis in a young child. Pediatr Cardiol. 2004;25:163–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Samir K, Fraisse A, Rauzier JM, et al. Anomalous drainage of the right superior vena cava to the left atrium. Eur J Cardiothorac Surg. 2003;23:1051.PubMedCrossRefGoogle Scholar
  49. 49.
    Van Praagh S, Geva T, Lock JE, et al. Biatrial or left atrial drainage of the right superior vena cava: anatomic, morphogenetic, and surgical considerations—report of three new cases and literature review. Pediatr Cardiol. 2003;24:350–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Vassallo M, Pascotto M, Pisacane C, et al. Right superior vena cava draining into the left atrium: prenatal diagnosis and postnatal management. Ultrasound Obstet Gynecol. 2006;27:445–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Anderson RC, Adams PJ, Burke B. Anomalous inferior vena cava with azygos continuation (infrahepatic interruption of the inferior vena cava). Report of 15 new cases. J Pediatr. 1961;59:370–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Applegate KE, Goske MJ, Pierce G, et al. Situs revisited: imaging of the heterotaxy syndrome. Radiographics. 1999;19:837–52, discussion 853–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Beedie RJ, Yeo W, Morcos SK. Congenital absence of the intrahepatic segment of the inferior vena cava with azygos continuation presenting as a mediastinal mass. Postgrad Med J. 1989;65:253–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Manzer R, Sutton RG, Ploessl J, et al. Cardiopulmonary bypass venous cannulation challenges in a paediatric patient with complex congenital heart disease: a case report. Perfusion. 1997;12:203–6.PubMedCrossRefGoogle Scholar
  55. 55.
    McElhinney DB, Kreutzer J, Lang P, et al. Incorporation of the hepatic veins into the cavopulmonary circulation in patients with heterotaxy and pulmonary arteriovenous malformations after a Kawashima procedure. Ann Thorac Surg. 2005;80:1597–603.PubMedCrossRefGoogle Scholar
  56. 56.
    Baldridge EDJ, Canos AJ. Venous anomalies encountered in aortoiliac surgery. Arch Surg. 1987;122:1184–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Burri H, Vuille C, Sierra J, et al. Drainage of the inferior vena cava to the left atrium. Echocardiography. 2003;20:185–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Goor D, Lillehei C. Congenital malformations of the heart. New York: Grune and Stratton; 1975.Google Scholar
  59. 59.
    Mayo J, Gray R, St Louis E, et al. Anomalies of the inferior vena cava. AJR Am J Roentgenol. 1983;140:339–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Haswell DM, Berrigan TJJ. Anomalous inferior vena cava with accessory hemiazygos continuation. Radiology. 1976;119:51–4.PubMedGoogle Scholar
  61. 61.
    Hurwitt E, Escher D, Citrin L. Surgical correction of cyanosis due to entrance of left superior vena cava into left auricle. Surgery. 1955;38:903–14.PubMedGoogle Scholar
  62. 62.
    Healy JEJ. An anatomic survey of anomalous pulmonary veins: their clinical significance. J Thorac Surg. 1952;23:433–44.Google Scholar
  63. 63.
    Senocak F, Ozme S, Bilgic A, et al. Partial anomalous pulmonary venous return. Evaluation of 51 cases. Jpn Heart J. 1994;35:43–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Wong ML, McCrindle BW, Mota C, et al. Echocardiographic evaluation of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 1995;26:503–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Gustafson RA, Warden HE, Murray GF, et al. Partial anomalous pulmonary venous connection to the right side of the heart. J Thorac Cardiovasc Surg. 1989;98:861–8.PubMedGoogle Scholar
  66. 66.
    Hijii T, Fukushige J, Hara T. Diagnosis and management of partial anomalous pulmonary venous connection. A review of 28 pediatric cases. Cardiology. 1998;89:148–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Kiseleva IP, Malsagov GU. Differential diagnosis of anomalous pulmonary venous return. A clinical-roentgenological study. Cor Vasa. 1984;26:140–6.PubMedGoogle Scholar
  68. 68.
    Ferrari VA, Scott CH, Holland GA, et al. Ultrafast three-dimensional contrast-enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 2001;37:1120–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Brown JW, Ruzmetov M, Minnich DJ, et al. Surgical management of scimitar syndrome: an alternative approach. J Thorac Cardiovasc Surg. 2003;125:238–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Dupuis C, Charaf LA, Breviere GM, et al. The “adult” form of the scimitar syndrome. Am J Cardiol. 1992;70:502–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Dupuis C, Charaf LA, Breviere GM, et al. “Infantile” form of the scimitar syndrome with pulmonary hypertension. Am J Cardiol. 1993;71:1326–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Holt PD, Berdon WE, Marans Z, et al. Scimitar vein draining to the left atrium and a historical review of the scimitar syndrome. Pediatr Radiol. 2004;34:409–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Idris MT. Diagnostic aid of transesophageal echocardiography in an adult case of scimitar syndrome: confirmation of the findings at surgery and review of the literature. J Am Soc Echocardiogr. 1998;11:387–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Cohen MS, Weinberg P, Coon PD, et al. Deviation of atrial septum primum in association with normal left atrioventricular valve size. J Am Soc Echocardiogr. 2001;14:732–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Chin AJ, Weinberg PM, Barber G. Subcostal two-dimensional echocardiographic identification of anomalous attachment of septum primum in patients with left atrioventricular valve underdevelopment. J Am Coll Cardiol. 1990;15:678–81.PubMedCrossRefGoogle Scholar
  76. 76.
    Ferencz C, Rubin JD, McCarter RJ, et al. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol. 1985;121:31–6.PubMedGoogle Scholar
  77. 77.
    Craig JM, Darling RC, Rothney WB. Total pulmonary venous drainage into the right side of the heart; report of 17 autopsied cases not associated with other major cardiovascular anomalies. Lab Invest. 1957;6:44–64.PubMedGoogle Scholar
  78. 78.
    Jenkins KJ, Sanders SP, Orav EJ, et al. Individual pulmonary vein size and survival in infants with totally anomalous pulmonary venous connection. J Am Coll Cardiol. 1993;22:201–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Gilbert TB, Panico FG, McGill WA, et al. Bronchial obstruction by transesophageal echocardiography probe in a pediatric cardiac patient. Anesth Analg. 1992;74:156–8.PubMedGoogle Scholar
  80. 80.
    Lunn RJ, Oliver WCJ, Hagler DJ, et al. Aortic compression by transesophageal echocardiographic probe in infants and children undergoing cardiac surgery. Anesthesiology. 1992;77:587–90.PubMedCrossRefGoogle Scholar
  81. 81.
    Frommelt PC, Stuth EA. Transesophageal echocardiographic in total anomalous pulmonary venous drainage: hypotension caused by compression of the pulmonary venous confluence during probe passage. J Am Soc Echocardiogr. 1994;7:652–4.PubMedGoogle Scholar
  82. 82.
    Chang YY, Chang CI, Wang MJ, et al. The safe use of intraoperative transesophageal echocardiography in the management of total anomalous pulmonary venous connection in newborns and infants: a case series. Paediatr Anaesth. 2005;15:939–43.PubMedCrossRefGoogle Scholar
  83. 83.
    Reddy SC, Chopra PS, Rao PS. Mixed-type total anomalous pulmonary venous connection: echocardiographic limitations and angiographic advantages. Am Heart J. 1995;129:1034–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Bennetts J, Caldarone C. Partial and total anomalous pulmonary venous connection: surgical perspective. eMedicine Specialties: Pediatrics, Cardiothoracic Surgery; 2006.Google Scholar
  85. 85.
    Kawashima Y, Matsuda H, Nakano S, et al. Tree-shaped pulmonary veins in infracardiac total anomalous pulmonary venous drainage. Ann Thorac Surg. 1977;23:436–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Karamlou T, Gurofsky R, Al Sukhni E, et al. Factors associated with mortality and reoperation in 377 children with total anomalous pulmonary venous connection. Circulation. 2007;115:1591–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Caldarone CA, Najm HK, Kadletz M, et al. Relentless pulmonary vein stenosis after repair of total anomalous pulmonary venous drainage. Ann Thorac Surg. 1998;66:1514–20.PubMedCrossRefGoogle Scholar
  88. 88.
    Yun TJ, Coles JG, Konstantinov IE, et al. Conventional and sutureless techniques for management of the pulmonary veins: evolution of indications from postrepair pulmonary vein stenosis to primary pulmonary vein anomalies. J Thorac Cardiovasc Surg. 2005;129:167–74.PubMedCrossRefGoogle Scholar
  89. 89.
    Snider AR, Silverman NH, Turley K, et al. Evaluation of infradiaphragmatic total anomalous pulmonary venous connection with two-dimensional echocardiography. Circulation. 1982;66:1129–32.PubMedCrossRefGoogle Scholar
  90. 90.
    Cooper MJ, Teitel DF, Silverman NH, et al. Study of the infradiaphragmatic total anomalous pulmonary venous connection with cross-sectional and pulsed Doppler echocardiography. Circulation. 1984;70:412–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Smallhorn JF, Freedom RM. Pulsed Doppler echocardiography in the preoperative evaluation of total anomalous pulmonary venous connection. J Am Coll Cardiol. 1986;8:1413–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Ayabakan C, Ozkutlu S. Normal patterns of flow in the superior caval, hepatic and pulmonary veins as measured using Doppler echocardiography during childhood. Cardiol Young. 2003;13:143–51.PubMedCrossRefGoogle Scholar
  93. 93.
    Appleton CP. Hemodynamic determinants of Doppler pulmonary venous flow velocity components: new insights from studies in lightly sedated normal dogs. J Am Coll Cardiol. 1997;30:1562–74.PubMedCrossRefGoogle Scholar
  94. 94.
    Grosse-Wortmann L, Al-Otay A, Goo HW, et al. Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardiol. 2007;49:993–1002.PubMedCrossRefGoogle Scholar
  95. 95.
    Roman KS, Kellenberger CJ, Macgowan CK, et al. How is pulmonary arterial blood flow affected by pulmonary venous obstruction in children? A phase-contrast magnetic resonance study. Pediatr Radiol. 2005;35:580–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Division of Pediatric Cardiology, Department of PediatricsLucile Packard Children’s Hospital, Stanford University School of MedicinePalo AltoUSA

Personalised recommendations