Sapience, Consciousness, and the Knowledge Instinct (Prolegomena to a Physical Theory)

  • Leonid I. Perlovsky

Abstract

The chapter describes a mathematical theory of sapience and consciousness: higher mental abilities including abilities for concepts, emotions, instincts, understanding, imagination, intuition, beauty, and sublimity. The knowledge instinct drives our understanding of the world. Aesthetic emotions, our needs for beauty and sublimity, are related to the knowledge instinct. I briefly discuss neurobiological grounds as well as difficulties encountered since the 1950s by previous attempts at mathematical modeling of the mind. Dynamic logic, the mathematics of the knowledge instinct, is related to cognitive and philosophical discussions about the mind and sapience.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, G. (1987). Encyclopedia of Neuroscience. Birkhaüser, Boston, MA.Google Scholar
  2. Aristotle (IV BC). Metaphysics, tr. W. D. Ross, in: Complete Works of Aristotle, J. Barnes (ed.), Princeton, NJ, 1995.Google Scholar
  3. Bellman, R.E. (1961). Adaptive Control Processes. Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  4. Berlyne, D. E. (1960). Conflict, Arousal, and Curiosity, McGraw-Hill, New YorkGoogle Scholar
  5. Berlyne, D. E. (1973). Pleasure, Reward, Preference: Their Nature, Determinants, and Role in Behavior, Academic Press, New York.Google Scholar
  6. Carpenter, G.A, and Grossberg, S. (1987). A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics and Image Processing, 37, 54–115.CrossRefGoogle Scholar
  7. Chalmers, D.J. (1997). The Conscious Mind: In Search of a Fundamental Theory, Oxford University Press, 1997.Google Scholar
  8. Chomsky, N. (1981). In Explanation in Linguistics, N. Hornstein and D. Lightfoot (eds.), Longman, London.Google Scholar
  9. Cramer, H. (1946). Mathematical Methods of Statistics, Princeton University Press, Princeton NJ.MATHGoogle Scholar
  10. Damasio, A.R. (1994). Descartes’ Error: Emotion, Reason, and the Human Brain. Grosset/Putnam, New York.Google Scholar
  11. Deacon, T.W. (1998). The Symbolic Species: The Co-Evolution of Language and the Brain, Norton.Google Scholar
  12. Festinger, L. (1957). A Theory of Cognitive Dissonance, Stanford University Press, Stanford, CA.Google Scholar
  13. Feynman, R.P. and Hibbs, A.R. (1965). Quantum Mechanics and Path Integrals. McGraw-Hill, New York.MATHGoogle Scholar
  14. Fontanari, J.F., and Perlovsky, L.I. (2004). Solvable null model for the distribution of word frequencies. Physical Review E 70, 042901.Google Scholar
  15. Fontanari, J.F., and Perlovsky, L.I. (2005a). Evolution of communication in a community of simple-minded agents. IEEE International Conference on Integration of Knowledge in Intensive Multi-Agent Sys., Waltham, MA.Google Scholar
  16. Fontanari, J.F., and Perlovsky, L.I. (2005b). Meaning Creation and Modeling Field Theory. IEEE International Conference on Integration of Knowledge in Intensive Multi-Agent Sys., Waltham, MAGoogle Scholar
  17. Freeman, W.J. (1975) Mass Action in the Nervous System. Academic Press, New York.Google Scholar
  18. Grossberg, S. (1982). Studies of Mind and Brain, D. Reidel, Dordrecht, Holland.MATHGoogle Scholar
  19. Grossberg, S., and Levine, D.S. (1987). Neural dynamics of attentionally modulated Pavlovian conditioning: blocking, inter-stimulus interval, and secondary reinforcement. Psychobiology, 15(3), 195–240.Google Scholar
  20. Grossberg, S. (1988). Neural Networks and Natural Intelligence. MIT Press, Cambridge, MA.Google Scholar
  21. Grossberg, S. (2000). Linking mind to brain: the mathematics of biological intelligence. Notices of the American Mathematical Society, 471361–1372.Google Scholar
  22. Hebb, D. (1949). Organization of Behavior, J.Wiley & Sons, New York.Google Scholar
  23. Jackendoff, R. (2002). Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford University Press.Google Scholar
  24. James, W. (1890) The Principles of Psychology. Dover Books, New York, 1950.Google Scholar
  25. Jaynes, J. (2000). The Origin of Consciousness in the Breakdown of the Bicameral Mind. Houghton Mifflin Co., Boston, MA; 2nd Ed.Google Scholar
  26. Jung, C.G. (1921). Psychological Types. In the Collected Works, v.6, Bollingen Series XX, Princeton University Press, Princeton, NJ, 1971.Google Scholar
  27. Jung, C.G (1934) Archetypes of the Collective Unconscious, in: The Collected Works, v.9,II, Princeton University Press, Princeton, NJ, 1969.Google Scholar
  28. Kant, I. (1781) Critique of Pure Reason, tr. J.M.D. Meiklejohn, Wiley, New York, 1943.Google Scholar
  29. Kant, I. (1788). Critique of Practical Reason, tr. J.H Bernard, 1986, Hafner.Google Scholar
  30. Kant, I. (1790). Critique of Judgment, tr. J.H.Bernard, Macmillan, London, 1914.Google Scholar
  31. Kant, I. (1798). Anthropology from a Pragmatic Point of View. Tr. M.J. Gregor. Kluwer, Boston, 1974.Google Scholar
  32. Kecman, V. (2001). Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models (Complex Adaptive Systems). The MIT Press, Cambridge, MA.Google Scholar
  33. Koch, C., and Segev, I. (eds.), (1998). Methods in Neuronal Modeling: From Ions to Networks MIT Press, Cambridge, MA.Google Scholar
  34. Koch, C. (2004). The Quest for Consciousness: A Neurobiological Approach, Roberts & Company.Google Scholar
  35. Levine, D., and Perlovsky, L. (2006). The knowledge instinct, reward, and punishment. To be published.Google Scholar
  36. Marchal, B. (2005) Theoretical Computer Science and the Natural Sciences. Physics of Life Reviews, 2(3), pp. 1–38.Google Scholar
  37. Minsky, M.L. (1975). A Framework for Representing Knowlege, in The Psychology of Computer Vision, P. H. Whinston (ed.), McGraw-Hill, New York.Google Scholar
  38. Minsky, M. (1988). The Society of Mind. MIT Press, Cambridge, MA.Google Scholar
  39. Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 11, 207–212.Google Scholar
  40. Penrose, R. (1994). Shadows of the Mind. Oxford University Press, Oxford.Google Scholar
  41. Perlovsky, L.I. (1996a). Fuzzy Logic of Aristotelian For Perlovsky, L.I. (1996a) Proceedings of the Conference on Intelligent Systems and Semiotics ’96. Gaithersburg, MD, v.1, pp. 43–48.Google Scholar
  42. Perlovsky, L.I. (1996b). Gödel Theorem and Semiotics. Proceedings of the Conference on Intelligent Systems and Semiotics ’96. Gaithersburg, MD, v.2, pp. 14–18.Google Scholar
  43. Perlovsky, L.I. (1998). Conundrum of combinatorial complexity. IEEE Trans. PAMI, 20(6), 666–670.Google Scholar
  44. Perlovsky, L.I., Webb, V.H., Bradley, S.R. and Hansen, C.A. (1998). Improved ROTHR detection and tracking using MLANS. AGU Radio Science, 33(4), 1034–44.Google Scholar
  45. Perlovsky, L.I., (2001). Neural Networks and Intellect, Oxford University. Press, New York.Google Scholar
  46. Perlovsky, L. (2002). Aesthetics and mathematical theories of intellect (Russian). Iskusstvoznanie, 2(02), 558–594, Moscow.Google Scholar
  47. Perlovsky, L.I. (2004). Integrating language and cognition. IEEE Connections (Feature article), 2(2), 8–12.Google Scholar
  48. Perlovsky, L.I. (2006a). Toward physics of the mind: Concepts, emotions, consciousness, and symbols. Physics of Life Reviews, 3(1), 23–55.CrossRefGoogle Scholar
  49. Perlovsky, L.I. (2006b). Symbols: Integrated cognition and language, in Computational Semiotics, A. Loula and R. Gudwin (ed.). The Idea Group, PA.Google Scholar
  50. Perlovsky, L.I. (2006c). Fuzzy dynamic logic. New Mathematics and Natural Computation, 2(1), 43–55.MATHCrossRefMathSciNetGoogle Scholar
  51. Perlovsky, L. (2008). The Knowledge Instinct. Basic Books. New York, NY.Google Scholar
  52. Piaget, J. (2000) The Psychology of the Child Tr. H.Weaver, Basic Books.Google Scholar
  53. Plato (IV BC) Parmenides, in: L. Cooper, Plato, Oxford University Press, New York, 1997.Google Scholar
  54. Reyna, V.F., and Brainerd, C.J. (1995). Fuzzy-trace theory: An interim synthesis. Learning and Individual Differences, 7(1), 1–75.CrossRefGoogle Scholar
  55. Searle, J. (1992). The Rediscovery of the Mind MIT Press, Cambridge, MA.Google Scholar
  56. Searle, J.R. (1997). “The mystery of consciousness.” New York Review of Books, NY.Google Scholar
  57. Singer, R.A., Sea, R.G. and Housewright, R.B. (1974). Derivation and evaluation of improved tracking filters for use in dense multitarget environments, IEEE Transactions on Information Theory, IT-20, 423–432.Google Scholar
  58. Taylor, J. G. (2005). Mind And Consciousness: Towards A Final Answer? Physics of Life Reviews, 2(1), 57.CrossRefGoogle Scholar
  59. Westfall, R.S. (1983). Never at Rest: A Biography of Isaac Newton. Cambridge University Press, Cambridge.MATHGoogle Scholar
  60. Winston, P.H. (1984). Artificial Intelligence. 2nd edition, Addison-Wesley, Reading, MA.MATHGoogle Scholar
  61. Zeki, S. (1993). A Vision of the Brain. Blackwell, Oxford.Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Leonid I. Perlovsky
    • 1
  1. 1.Air Force Research Laboratory Sensors DirectorateHarvard University CambridgeUSA

Personalised recommendations