Advertisement

Self-Organizing Digital Systems

  • Nicholas J. Macias
  • Lisa J. K. Durbeck
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Keywords

Target Cell Field Programmable Gate Array Truth Table Cell Matrix Very Large Scale Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ababei, C., Maidee, P., and Bazargan, K. (2004). Exploring potential benefits of 3D FPGA integration. Field-Programmable Logic and its Applications, pages 874–880. LNCS/Springer Heidelberg, Germany.Google Scholar
  2. Abdi, H. (1994). A neural network primer. Journal of Biological Systems, 2(3):247–283.CrossRefGoogle Scholar
  3. Alam, S., Troxel, D., and Thompson, C. (2002). A comprehensive layout methodology and layout-specific circuit analyses for three-dimensional integrated circuits. ISQED International Symposium on Quality Electronic Design, 2002, page 246. IEEE Computer Society Washington, DC.CrossRefGoogle Scholar
  4. Alexander, M., Cohoon, J., Colflesh, J., Karro, J., and Robins, G. (1995). Three-dimensional field-programmable gate arrays. ASIC Conference and Exhibit, 1995, Proceedings of the Eighth Annual IEEE International, pages 253–256.Google Scholar
  5. Arms, K. and Camp, P. (1987). Biology. Saunders, Philadelphia, 3rd edition.Google Scholar
  6. Aspray, W., and Burks, A. (1987). Papers of John von Neumann on Computing and Computer Theory, volume 12 of Charles Babbage Institute Reprint Series for the History of Computing.Google Scholar
  7. Borriello, G., Ebeling, C., Hauck, S., and Burns, S. (1995). The Triptych FPGA architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 3(4):491–501. IEEE Educational Activity Department Piscataway, NJ.CrossRefGoogle Scholar
  8. Boubekeur, A., Patry, J., Saucier, G., and Trilhe, J. (1992). Configuring a wafer-scale two-dimensional array of single-bit processors. Computer, 25(4):29–39. IEEE Computer Society Press, Los Alamitos, CA, USA.CrossRefGoogle Scholar
  9. Burns, S., Kuhn, C., Jacobs, K., MacKenzie, J., Ramsdale, C., Arias, A., Watts, J., Etchells, M., Chalmers, K., Devine, P., et al. (2004). Printing of polymer thin-film transistors for active-matrix- display applications. Journal of the Society for Information Display, 11:599.CrossRefGoogle Scholar
  10. Cakmakci, O., and Koyuncu, M. (2000). Integrated electronic systems in flexible and washable fibers. None. filed with the United States Patent Office and the European Patent Office.Google Scholar
  11. Cakmakci, O., Koyuncu, M., and Eber-Koyuncu, M. (2001). Fiber computing. Proceedings of the Workshop on Distributed and Disappearing User Interfaces in Ubiquitous Computing, CHI.Google Scholar
  12. Cell Matrix Corporation (2006a). Bibliography for Cell Matrix-related research. http://www.cellmatrix.com/entryway/products/pub/bibliography.html.Google Scholar
  13. Cell Matrix Corporation (2006b). Cell Matrix Software. http://www.cellmatrix.com/entryway/ products/software/software.html.Google Scholar
  14. Cell Matrix Corporation (2006c). MOD 88 Online Viewer. http://cellmatrix.dyndns.org:12001/ cgi-bin/mod88/obs2.cgi?Google Scholar
  15. Darwin, C. (1859). The Origin of Species by Means of Natural Selection. Or the Preservation of Favoured Races in the Struggle for Life. Murray, London.Google Scholar
  16. J. DePreitere, et al. (1994). An optoelectronic 3D field programmable gate array. In Hartenstein, W. and Servit, M., editors, Field-Programmable Logic: Architectures, Synthesis, and Applications, Lecture Notes in Computer Science, volume 849. Springer-Verlag, Berlin.Google Scholar
  17. Deutsch, L. and Schiffman, A. (1984). Efficient implementation of the Smalltalk-80 system. Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming languages, pages 297–302. ACM Saltlake City, UT.Google Scholar
  18. Duncan, R. (1989). Design goals and implementation of the new High Performance File System. Microsoft Systems Journal, 4(5):1–14.Google Scholar
  19. Durbeck, L., and Macias, N. (2001a). Autonomously Self-Repairing Circuits. NASA SBIR Phase II Proposal.Google Scholar
  20. Durbeck, L., and Macias, N. (2001b). Autonomously Self-Repairing Circuits. NASA SBIR Phase I Final Report.Google Scholar
  21. Durbeck, L., and Macias, N. (2001c). Self-configurable parallel processing system made from self-dual code/data processing cells utilizing a non-shifting memory. US Patent 6,222,381.Google Scholar
  22. Durbeck, L., and Macias, N. (2001d). The Cell Matrix: An architecture for nanocomputing. Nanotechnology, 12(3):217–230.CrossRefGoogle Scholar
  23. Durbeck, L., and Macias, N. (2002). Defect-tolerant, fine-grained parallel testing of a Cell Matrix. Proceedings of SPIE ITCom, 4867. SPIE Boston, MA.Google Scholar
  24. Dwyer, C., Johri, V., Patwardhan, J., Lebeck, A., and Sorin, D. (2004a). Design tools for self-assembling nanoscale technology. Nanotechnology, 15(9):1240–1245..CrossRefGoogle Scholar
  25. Dwyer, C., Poulton, J., Taylor, R., and Vicci, L. (2004b). DNA self-assembled parallel computer architectures. Nanotechnology, 15(11):1688–1694..CrossRefGoogle Scholar
  26. Edmison, J., Jones, M., Nakad, Z., and Martin, T. (2002). Using piezoelectric materials for wearable electronic textiles. Proceedings of the Sixth International Symposium on Wearable Computers, 2002.(ISWC 2002). pages 41–48. LNCS/Springer Berlin, Germany.Google Scholar
  27. Fischer, T. (1987). Heavy-ion-induced, gate-rupture in power MOSFETs. IEEE Transactions on Nuclear Science, 34(6):1786–1791.CrossRefGoogle Scholar
  28. Fraunhofer Institute for Reliability and Microintegration, Munich, 2006 Fra06 Fraunhofer Institute for Reliability and Microintegration, Munich (2006). Department of Si Technology and Vertical System Integration. http://www.izm-m.fraunhofer.de/files/fraunhofer2/si-technology__vsi.pdf, accessed 10/31/2006.Google Scholar
  29. Fuchs, W., and Swartzlander Jr, E. (1992). Wafer-scale integration: Architectures and algorithms. Computer, 25(4):6–8.Google Scholar
  30. Haldane, J. (1931). The Philosophical Basis of Life.Google Scholar
  31. Heisenberg, W. (1927). Werner Heisenberg, in a letter to Wolfgang Pauli, (February 1927).Google Scholar
  32. IEEE (1989–1995). Proceedings of the International Conference on Wafer Scale Integration.Google Scholar
  33. Kamins, T., and Williams, R. (2001). Trends in nanotechnology: Self-assembly and defect tolerance. Proceedings of the NSF Partnership in Nanotechnology Conference.Google Scholar
  34. Kauffman, S. (1993). The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press.Google Scholar
  35. Kim, J., Hopfield, J., and Winfree, E. (2004). Neural network computation by in vitro transcriptional circuits. Advances in Neural Information Processing Systems, 17:681–688.Google Scholar
  36. Koza, J. (1992). Genetic Programming: On the programming of computers by means of natural selection. Bradford.Google Scholar
  37. Leeser, M., Meleis, W., Vai, M., and Zavracky, P. (1997). Rothko: A three dimensional FPGA architecture, its fabrication, and design tools. Seventh International Workshop on Field Programmable Logic and Applications. Springer London, UK.Google Scholar
  38. Lennox, J. (2001). Aristotle’s Philosophy of Biology: Studies in the Origins of Life Science. Cambridge University Press.Google Scholar
  39. MacDonald, W. A. (2006). Advanced Flexible Polymeric Substrates. In Klauk, H., editor, Organic Electronics: Materials, Manufacturing & Its Applications. Wiley.Google Scholar
  40. Macias, N. (1999). The PIG Paradigm: The design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture. Proceedings of the First NASA/DOD Workshop on Evolvable Hardware (EH’99). IEEE Pasadema, CM.Google Scholar
  41. Macias, N. (2001). Circuits and sequences for enabling remote access to and control of non-adjacent cells in a locally self-reconfigurable processing system composed of self-dual processing cells. US Patent 6,297,667.Google Scholar
  42. Macias, N. (2006). Cell Matrix place and route tool: Changes and improvements. White Paper delivered to Los Alamos National Laboratory under subcontract #90843-001-04 4x.Google Scholar
  43. Macias, N., and Durbeck, L. (2002). Self-assembling circuits with autonomous fault handling. Proceedings of the NASA/DoD Conference on, Evolvable Hardware, 2002. pages 46–55. IEEE Washington, DC.Google Scholar
  44. Macias, N., and Durbeck, L. (2004). Adaptive methods for growing electronic circuits on an imperfect synthetic matrix. Biosystems, 73(3):172–204..CrossRefGoogle Scholar
  45. Macias, N., and Durbeck, L. (2005a). Unpublished white papers and talks delivered to Los Alamos National Laboratory under subcontract #90843-001-04 4x.Google Scholar
  46. Macias, N., and Durbeck, L. (2005b). A hardware implementation of the Cell Matrix self-configurable architecture: The Cell Matrix MOD 88. Proceedings of the NASA/DoD Conference on, Evolvable Hardware, 2005. pages 103–106. IEEE Washington, DC.Google Scholar
  47. Macias, N., Henry III, L., and Raju, M. (1999). Self-reconfigurable parallel processor made from regularly-connected self-dual code/data processing cells. US Patent 5,886,537.Google Scholar
  48. Macias, N., and Raju, M. D. (2001). Method and apparatus for automatic high-speed bypass routing in a Cell Matrix self-configurable hardware system. US Patent 6,577,159.Google Scholar
  49. Mange, D., Sipper, M., Stauffer, A., and Tempesti, G. (2000). Toward self-repairing and self-replicating hardware: the Embryonicsapproach. Proceedings of the Second NASA/DoD Workshop on, Evolvable Hardware, 2000. pages 205–214. IEEE Paloatlo, CA.Google Scholar
  50. Marculescu, D., Marculescu, R., Zamora, N., Stanley-Marbell, P., Khosla, P., Park, S., Jayaraman, S., Jung, S., Lauterbach, C., and Weber, W. (2003). Electronic textiles: A platform for pervasive computing. Proceedings of the IEEE, 91(12):1995–2018..Google Scholar
  51. Martin, T. (2006). Tom Martin’s Wearable Electronic Textiles research group at Virginia Tech. http://www.ccm.ece.vt.edu/etextiles/, http://www.ccm.ece.vt.edu/etextiles/publications/ accessed 10/31/2006.Google Scholar
  52. Martin, T., Jones, M., Edmison, J., and Shenoy, R. (2003). Towards a design framework for wearable electronic textiles. Proceedings of the Seventh IEEE International Symposium on Wearable Computers, 2003. pages 190–199.Google Scholar
  53. Meleis, W., Leeser, M., Zavracky, P., and Vai, M. (1997). Architectural design of a three dimensional FPGA. Proceedings of the Seventeenth Conference on Advanced Research in VLSI, 1997, pages 256–268. IEEE Computer Society HN Arbor, MI.CrossRefGoogle Scholar
  54. Misc (2006). International Journal of Chip-Scale Electronics, Flip-Chip Technology, Optoelectronic Interconnection and Wafer-Level Packaging. http://www.chipscalereview.com accessed 10/31/2006.Google Scholar
  55. Montemerlo, M., Love, J., Opiteck, G., Goldhaber-Gordon, D., and Ellenbogen, J. (1996). Technologies and designs for electronic nanocomputers. The MITRE Corporation, McLean, VA, MITRE Tech. Rep. MTR 96W0000044, July.Google Scholar
  56. Ortega-Sanchez, C., Mange, D., Smith, S., and Tyrrell, A. (2000). Embryonics: A bio-inspired cellular architecture with fault- tolerant properties. Genetic Programming and Evolvable Machines, 1(3):187–215.zbMATHCrossRefGoogle Scholar
  57. Page, I. (1996). Constructing hardware-software systems from a single description. Journal of VLSI Signal Processing, 12(1):87–107.CrossRefMathSciNetGoogle Scholar
  58. Park, S., Pistol, C., Ahn, S., Reif, J., Lebeck, A., Dwyer, C., and LaBean, T. (2006). Finite-size, fully-addressable DNA tile lattices formed by hierarchical assembly procedures. Angewandte Chemie, 45:735–739.CrossRefGoogle Scholar
  59. Patwardhan, J., Dwyer, C., Lebeck, A., and Sorin, D. (2004). Circuit and system architecture for DNA-guided self-assembly of nanoelectronics. Foundations of Nanoscience: Self-Assembled Architectures and Devices. Proceedings 2004, pages 344–358. Science Technica Snowbird, UT.Google Scholar
  60. Patwardhan, J., Dwyer, C., Lebeck, A., and Sorin, D. (2006). NANA: A nano-scale active network architecture. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2(1):1–30..CrossRefGoogle Scholar
  61. Pistol, C., Lebeck, A., and Dwyer, C. (2006). Design automation for DNA self-assembled nanostructures. Proceedings of the 43rd Annual Conference on Design Automation, pages 919–924. ACM Press New York, NY.Google Scholar
  62. Plastic Logic (2006). Plastic Logic, developer of printed flexible thin film transistor (TFT) arrays. http://www.plasticlogic.com/technology.php accessed 10/31/2006.Google Scholar
  63. Prodan, L., Tempesti, G., Mange, D., and Stauffer, A. (2003). Embryonics: Electronic stem cells. In Abbass, H., Standish, R., and Bedau, M., editors, Artificial Life VIII: Proceedings of the Eighth International Conference on Artificial Life, pages 101–105. Bradford. The MIT Press Sydney, Australia.Google Scholar
  64. Robinson, B., and Seeman, N. (1987). The design of a biochip: a self-assembling molecular-scale memory device. Protein Engineering Design and Selection, 1:295–300.CrossRefGoogle Scholar
  65. Rothemund, P., Papadakis, N., and Winfree, E. (2004). Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology, 2(12):2041–2053..CrossRefGoogle Scholar
  66. Sabalan Group (2006). Textile History. http://www.sabalangroup.com/aboutus-history-textilehist-en.html.Google Scholar
  67. Saha, C., Bellis, S., Mathewson, A., and Popovici, E. (2004). Performance enhancement defect tolerance in the Cell Matrix architecture. Proceedings of MIEL 2: 777–780.Google Scholar
  68. Saucier, G., Patry, J., and Kouka, E. (1988). Defect tolerance in a wafer scale array for image processing. Proceedings of an International Workshop on Defect and Fault Tolerance in VLSI Systems, University of Massachusetts, Amherst, Oct., 8:8.2–1–8.2–13.Google Scholar
  69. Saucier, G., and Trilhe, J. (1986). Wafer scale integration. North-Holland.Google Scholar
  70. Schmit, H. (1997). Incremental reconfiguration for pipelined applications. IEEE Symposium on FPGAs for Custom Computing Machines, pages 47–55. IEEE Napa, CA.Google Scholar
  71. Seeman, N. (1982). Nucleic acid junctions and lattices. Journal of Theoretical Biology, 99(2):237–47..Google Scholar
  72. Seeman, N. (2003). Biochemistry and structural DNA nanotechnology: An evolving symbiotic relationship. Biochemistry, 42(24):7259–7269..CrossRefGoogle Scholar
  73. Sirringhaus, H., Sele, C. W., von Werne, T., and Ramsdale, C. (2006). Manufacturing of Organic Transistor Circuits by Solution-based Printing. Wiley Interscience.Google Scholar
  74. Stan, M., Franzon, P., Goldstein, S., Lach, J., and Ziegler, M. (2003). Molecular electronics: from devices and interconnect to circuits and architecture. Proceedings of the IEEE, 91(11):1940–1957.CrossRefGoogle Scholar
  75. Thompson, A. (1996). An evolved circuit, intrinsic in silicon, entwined with physics. Proceedings of the First International Conference on Evolvable Systems: From Biology to Hardware, pages 390–405. Springer Verlag Berlin, Germany.Google Scholar
  76. Trimberger, S. (1998). Scheduling designs into a time-multiplexed FPGA. Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, pages 153–160. ACM Press New York, NY.CrossRefGoogle Scholar
  77. Vinge, V. (1993). Technological singularity. VISION-21 Symposium sponsored by NASA Lewis Research Center and the Ohio Aerospace Institute, March.Google Scholar
  78. Waskiewicz, A., Groninger, J., Strahan, V., and Long, D. (1986). Burnout of power MOS transistors with heavy ions of Californium-252. IEEE, DNA, Sandia National Laboratories, and NASA, 1986 Annual Conference on Nuclear and Space Radiation Effects, 23rd, Providence, RI, July 21-23, 1986). IEEE Transactions on Nuclear Science (ISSN 0018-9499),, 33(pt 1):1710–1713.Google Scholar
  79. Winfree, E. (1998). Simulations of computing by self-assembly. Caltech CS Technical Report 1998.22.Google Scholar
  80. Winfree, E. (2003). DNA Computing by self-assembly. The Bridge, 33(4):31–38..Google Scholar
  81. Winfree, E., and Bekbolatov, R. (2004). Proofreading tile sets: Error-correction for algorithmic self-assembly. DNA Computing, 9:126–144.MathSciNetGoogle Scholar
  82. Winfree, E., Liu, F., Wenzler, L., and Seeman, N. (1998). Design and self-assembly of two-dimensional DNA crystals. Nature, 394(6693):539–544..CrossRefGoogle Scholar
  83. Wong, W. S., Daniel, J. H., Chabinyc, M. L., Arias, A. C., Ready, S. E., and Lujan, R. (2006). Thin-film transistor fabrication by digital lithography. In H. Klauk, editor, Organic Materials, Manufacturing, and Applications, Wiley VCH.Google Scholar
  84. Wyatt, P. and Raffel, J. (1989). Restructurable VLSI-a demonstrated wafer-scale technology. Proceedings of the First International Conference on Wafer Scale Integration, 1989. pages 13–20. IEEE Computer Society Press Washington, DC.Google Scholar
  85. Xilinx, Inc. (2006). Xilinx, Inc. http://www.xilinx.com accessed 10/31/2006.Google Scholar
  86. Zeng, A., Lu, J., Rose, K., and Gutmann, R. (2005). First-order performance prediction of cache memory with wafer-level 3D integration. IEEE Design & Test of Computers, 22(6):548–555.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Nicholas J. Macias
  • Lisa J. K. Durbeck

There are no affiliations available

Personalised recommendations