Distributed Control of Microscopic Robots in Biomedical Applications

  • Tad Hogg
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Biomedical Application Cellular Automaton Background Concentration Tissue Volume Nerve Repair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alon, U. (2007). An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman and Hall, London.zbMATHGoogle Scholar
  2. Andrianantoandro, E., Basu, S., Karig, D. K., and Weiss, R. (2006). Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology, 2(msb4100073):E1–E14.Google Scholar
  3. Arbuckle, D., and Requicha, A. A. G. (2004). Active self-assembly. In Proceedings of the IEEE International Conference on Robotics and Automation, New York, pages 896–901.Google Scholar
  4. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., and Shapiro, E. (2004). An autonomous molecular computer for logical control of gene expression. Nature, 429:423–429.CrossRefGoogle Scholar
  5. Berg, H. C. (1993). Random Walks in Biology, 2nd edition. Princeton University Press, Princeton, NJ.Google Scholar
  6. Berg, H. C., and Purcell, E. M. (1977). Physics of chemoreception. Biophysical Journal, 20:193–219.CrossRefGoogle Scholar
  7. Berna, J. et al. (2005). Macroscopic transport by synthetic molecular machines. Nature Materials, 4:704–710.CrossRefGoogle Scholar
  8. Bojinov, H., Casal, A., and Hogg, T. (2002). Multiagent control of modular self-reconfigurable robots. Artificial Intelligence, 142:99–120. Available as preprint cs.RO/0006030.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford.zbMATHGoogle Scholar
  10. Casal, A., Hogg, T., and Cavalcanti, A. (2003). Nanorobots as cellular assistants in inflammatory responses. In Shapiro, J., editor, Proceedings of the 2003 Stanford Biomedical Computation Symposium (BCATS2003), Stanford, CA, page 62. Available at Scholar
  11. Cavalcanti, A. and Freitas Jr., R. A. (2002). Autonomous multi-robot sensor-based cooperation for nanomedicine. International Journal of Nonlinear Sciences and Numerical Simulation, 3:743–746.CrossRefGoogle Scholar
  12. Collier, C. P., et al. (1999). Electronically configurable molecular-based logic gates. Science, 285:391–394.CrossRefGoogle Scholar
  13. Craighead, H. G. (2000). Nanoelectromechanical systems. Science, 290:1532–1535.CrossRefGoogle Scholar
  14. Dhariwal, A., Sukhatme, G. S., and Requicha, A. A. G. (2004). Bacterium-inspired robots for environmental monitoring. In Proceedings of the IEEE International Conference on Robotics and Automation, New York, pages 1436–1443.Google Scholar
  15. Drexler, K. E. (1992). Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York.Google Scholar
  16. Dreyfus, R. et al. (2005). Microscopic artificial swimmers. Nature, 437:862–865.CrossRefGoogle Scholar
  17. Freitas Jr., R. A. (1999). Nanomedicine, volume I: Basic Capabilities. Landes Bioscience, Georgetown, TX. Available at Scholar
  18. Freitas Jr., R. A. (2003). Nanomedicine, volume IIA: Biocompatibility. Landes Bioscience, Georgetown, TX. Available at Scholar
  19. Freitas Jr., R. A. (2006). Pharmacytes: An ideal vehicle for targeted drug delivery. Journal of Nanoscience and Nanotechnology, 6:2769–2775.CrossRefGoogle Scholar
  20. Fritz, J. et al. (2000). Translating biomolecular recognition into nanomechanics. Science, 288:316–318.CrossRefGoogle Scholar
  21. Fung, Y. C. (1997). Biomechanics: Circulation, 2nd edition. Springer, New York.CrossRefGoogle Scholar
  22. Galstyan, A., Hogg, T., and Lerman, K. (2005). Modeling and mathematical analysis of swarms of microscopic robots. In Arabshahi, P., and Martinoli, A., editors, Proceedings of the IEEE Swarm Intelligence Symposium (SIS2005), New York, pages 201–208.Google Scholar
  23. Gazi, V., and Passino, K. M. (2004). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man and Cybernetics, B34:539–557.CrossRefGoogle Scholar
  24. Ghosh, S., et al. (2003). Carbon nanotube flow sensors. Science, 299:1042–1044.CrossRefGoogle Scholar
  25. Gourley, P. L., et al. (2005). Ultrafast nanolaser flow device for detecting cancer in single cells. Biomedical Microdevices, 7:331–339.CrossRefGoogle Scholar
  26. Griffith, S., Goldwater, D., and Jacobson, J. M. (2005). Robotics: Self-replication from random parts. Nature, 437:636.CrossRefGoogle Scholar
  27. Hamad-Schifferli, K., et al. (2002). Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature, 415:152–155.CrossRefGoogle Scholar
  28. Hernandez-Ortiz, J. P., Stoltz, C. G., and Graham, M. D. (2005). Transport and collective dynamics in suspensions of confined swimming particles. Physical Review Letters, 95:204501.CrossRefGoogle Scholar
  29. Hogg, T. (2006). Coordinating microscopic robots in viscous fluids. Autonomous Agents and Multi-Agent Systems, 14(3):271–305.CrossRefGoogle Scholar
  30. Hogg, T., and Huberman, B. A. (2004). Dynamics of large autonomous computational systems. In Tumer, K., and Wolpert, D., editors, Collectives and the Design of Complex Systems, pages 295–315. Springer, New York.zbMATHCrossRefGoogle Scholar
  31. Hogg, T., and Kuekes, P. J. (2006). Mobile microscopic sensors for high-resolution in vivo diagnostics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2:239–247.CrossRefGoogle Scholar
  32. Hogg, T., and Sretavan, D. W. (2005). Controlling tiny multi-scale robots for nerve repair. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI2005), Menlo Park, CA pages 1286–1291. AAAI Press.Google Scholar
  33. Howard, J. (1997). Molecular motors: Structural adaptations to cellular functions. Nature, 389:561–567.CrossRefGoogle Scholar
  34. Janeway, C. A., et al. (2001). Immunobiology: The Immune System in Health and Disease. Garland, 5th edition, New York.Google Scholar
  35. Karniadakis, G. E. M., and Beskok, A. (2002). Micro Flows: Fundamentals and Simulation. Springer, Berlin.zbMATHGoogle Scholar
  36. Keller, K. H. (1971). Effect of fluid shear on mass transport in flowing blood. In Proceedings of the Federation of American Societies for Experimental Biology, pages 1591–1599.Google Scholar
  37. Keszler, B. L., Majoros, I. J., and Baker Jr., J. R. (2001). Molecular engineering in nanotechnology: Structure and composition of multifunctional devices for medical application. In Proceedings of the Ninth Foresight Conference on Molecular Nanotechnology, Palo Alto, CA.Google Scholar
  38. Lahann, J., and Langer, R. (2005). Smart materials with dynamically controllable surfaces. MRS Bulletin, 30:185–188.CrossRefGoogle Scholar
  39. Lerman, K., et al. (2001). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7:375–393.CrossRefGoogle Scholar
  40. Liu, J., et al. (2006). Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology, 51:2179–2189.CrossRefGoogle Scholar
  41. Li, Z., et al. (2005). Silicon nanowires for sequence-specific DNA sensing: Device fabrication and simulation. Applied Physics A, 80:1257–1263.CrossRefGoogle Scholar
  42. Mataric, M. (1992). Minimizing complexity in controlling a mobile robot population. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, New York pages 830–835.Google Scholar
  43. McAdams, H. H. and Arkin, A. (1997). Stochastic mechanisms in gene expression. Proceedings of the National Academy of Science USA, 94:814–819.CrossRefGoogle Scholar
  44. McCurdy, C. W. et al. (2002). Theory and modeling in nanoscience. workshop report,, US Dept. of Energy.Google Scholar
  45. Montemagno, C. and Bachand, G. (1999). Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology, 10:225–231.CrossRefGoogle Scholar
  46. Morris, K. (2001). Macrodoctor, come meet the nanodoctors. The Lancet, 357:778.CrossRefGoogle Scholar
  47. Natterer, F. (2001). The Mathematics of Computerized Tomography. Society for Industrial and Applied Math (SIAM), ePhiladelphia.zbMATHCrossRefGoogle Scholar
  48. Nel, A., et al. (2006). Toxic potential of materials at the nanolevel. Science, 311:622–627.CrossRefGoogle Scholar
  49. NIH (2003). National Institutes of Health roadmap: Nanomedicine. Available at http:// Scholar
  50. Patolsky, F., and Lieber, C. M. (2005). Nanowire nanosensors. Materials Today, 8:20–28.CrossRefGoogle Scholar
  51. Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45:3–11.CrossRefGoogle Scholar
  52. Requicha, A. A. G. (2003). Nanorobots, NEMS and nanoassembly. Proceedings of the IEEE, 91:1922–1933.Google Scholar
  53. Riedel, I. H., et al. (2005). A self-organized vortex array of hydrodynamically entrained sperm cells. Science, 309:300–303.CrossRefGoogle Scholar
  54. Rus, D., and Vona, M. (1999). Self-reconfiguration planning with compressible unit modules. In Proceedings of the Conference on Robotics and Automation (ICRA99). New York, pages 2513–2520. IEEE.Google Scholar
  55. Salemi, B., Shen, W.-M., and Will, P. (2001). Hormone controlled metamorphic robots. In Proc. of the Intl. Conf. on Robotics and Automation (ICRA2001), New York, pages 4194–4199.Google Scholar
  56. Schrand, A. M., et al. (2007). Are diamond nanoparticles cytotoxic? Journal of Physical Chemistry B, 111:2–7.CrossRefGoogle Scholar
  57. Service, R. F. (2005). Nanotechnology takes aim at cancer. Science, 310:1132–1134.CrossRefGoogle Scholar
  58. Sheehan, P. E., and Whitman, L. J. (2005). Detection limits for nanoscale biosensors. Nano Letters, 5(4):803–807.CrossRefGoogle Scholar
  59. Soong, R. K., et al. (2000). Powering an inorganic nanodevice with a biomolecular motor. Science, 290:1555–1558.CrossRefGoogle Scholar
  60. Squires, T. M., and Quake, S. R. (2005). Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 77:977–1026.CrossRefGoogle Scholar
  61. Sretavan, D., Chang, W., Keller, C., and Kliot, M. (2005). Microscale surgery on axons for nerve injury treatment. Neurosurgery, 57(4):635–646.CrossRefGoogle Scholar
  62. Vogel, S. (1994). Life in Moving Fluids, 2nd edition. Princeton University Press, Princeton, NJ.Google Scholar
  63. Wang, H. et al. (2005). In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Science USA, 102:15752–15756.CrossRefGoogle Scholar
  64. Wang, S.-Y., and Williams, R. S., editors (2005). Nanoelectronics, volume 80. Springer. Special issue of Applied Physics A. New York.Google Scholar
  65. Wang, Z. L., and eSong, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312:242–246.CrossRefGoogle Scholar
  66. Whitesides, G. M., and Grzybowski, B. (2002). Self-assembly at all scales. Science, 295: 2418–2421.CrossRefGoogle Scholar
  67. Xie, X. S., Yu, J., and Yang, W. Y. (2006). Living cells as test tubes. Science, 312:228–230.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Tad Hogg

There are no affiliations available

Personalised recommendations