Self-Organization as Phase Transition in Decentralized Groups of Robots: A Study Based on Boltzmann Entropy

  • Gianluca Baldassarre
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Phase Transition Robotic System Autonomous Robot Entropy Index Neural Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. (1997). Basic Notions of Condensed Matter Physics. Perseus, Cambridge, MA.Google Scholar
  2. Anderson, C., Theraulaz, G., and Deneubourg, J.-L. (2002). Self-assemblages in insect societies. Insectes Sociaux, 49:1–12.CrossRefGoogle Scholar
  3. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., and Nolfi, S. (2007a). Self-organised coordinated motion in groups of physically connected robots. IEEE Transactions in Systems, Man and Cybernetics 37(1):224–239.CrossRefGoogle Scholar
  4. Beckers, R., Holland, O. E., and Deneubourg, J.-L. (1994). From local actions to global tasks: Stigmergy and collective robotics. In Brooks, R. A., and Maes, P., editors, Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), pages 181–189. MIT Press, Cambridge, MA.Google Scholar
  5. Baldassarre, G., Nolfi, S., and Parisi D. (2003). Evolution of collective behaviour in a group of physically linked robots. In Raidl, G., Guillot, A., and Meyer, J.-A., editors, Applications of Evolutionary Computing - Proceedings of the Second European Workshop on Evolutionary Robotics, pages 581-592. Springer, Berlin.Google Scholar
  6. Baldassarre, G., Parisi, D., and Nolfi, S. (2006). Distributed coordination of simulated robots based on self-organization. Artificial Life, 12(3):289–311.CrossRefGoogle Scholar
  7. Baldassarre, G., Parisi, D., and Nolfi, S. (2007a). Measuring coordination as entropy decrease in groups of linked simulated robots. In Minai, A., and Bar-Yam, Y. editors, Proceedings of the Fifth International Conference on Complex Systems (ICCS2004). Springer, Berlin, in press.Google Scholar
  8. Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence: From Natural to Artificial Systems. Oxford University Press, New York.zbMATHGoogle Scholar
  9. Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., and Bonabeau, E. (2001). Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ.zbMATHGoogle Scholar
  10. Cao, Y. U., Fukunaga, A. S., and Kahng, A. B. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4:1–23.CrossRefGoogle Scholar
  11. Dorigo, M., and Sahin, E. (2004). Swarm robotics: Special issue editorial. Autonomous Robots, 17(2-3):111–113.CrossRefGoogle Scholar
  12. Dorigo, M., Trianni, V., Sahin, E., Gross, R., Labella, T. H., Baldassarre, G., Nolfi, S., Denebourg, J-L, Floreano, D., and Gambardella, L. M. (2004). Evolving self-organizing behavior for a swarm-bot. Autonomous Robots, 17(2-3):223–245.CrossRefGoogle Scholar
  13. Dudek, G., Jenkin, M., Milios E., and Wilkes, D. (1996). A taxonomy for multi-agent robotics. Autonomous Robots, 3:375–397.CrossRefGoogle Scholar
  14. Feldman, P. D. (1998). A brief introduction to information theory, excess entropy and computational mechanics. Technical report. Department of Physics, University of California.Google Scholar
  15. Holland, O., and Melhuish, C. (1999). Stimergy, self-organization, and sorting in collective robotics. Artificial Life, 5:173–202.CrossRefGoogle Scholar
  16. Ijspeert, A. J., Martinoli, A., Billard, A., Gambardella, L. M. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11:149–171.CrossRefGoogle Scholar
  17. Krieger, M. J. B., Billeter, J. B., and Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406:992–995.CrossRefGoogle Scholar
  18. Kube, R. C., and Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and autonomous systems, 30:85–101.CrossRefGoogle Scholar
  19. Kube, C. R., and Zhang, H. (1993). Collective robotics: From social insects to robots, Adaptive Behavior, 2(2):189–219.CrossRefGoogle Scholar
  20. Mondada, F., Pettinaro, G., Guignard, A., Kwee, I., Floreano, D., Denebourg, J-L, Nolfi, S., Gambardella, L. M., and Dorigo, M. (2004). Swarm-bot: A new distributed robotic concept. Autonomous Robots, 17(2-3):193–221.CrossRefGoogle Scholar
  21. Nolfi, S., and Floreano, D. (2001). Evolutionary Robotics. The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge, MA.Google Scholar
  22. Prokopenko, M., Boschetti, F., and Ryan, A. J. (2007). An information-theoretic primer on complexity, self-organisation and emergence. Advances in Complex Systems, submitted.Google Scholar
  23. Prokopenko, M., Gerasimov, V., and Tanev, I. (2006). Evolving spatiotemporal coordination in a modular robotic system. In Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D., editors, From Animals to Animats 9: Proceedings of the Ninth International Conference on the Simulation of Adaptive Behavior (SAB-2006), volume 4095 of Lecture Notes in Computer Science, pages 558–569. Springer, Berlin.Google Scholar
  24. Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 361:2321–2344.MathSciNetCrossRefGoogle Scholar
  25. Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model, Computer Graphics, 21(4):25–34.CrossRefGoogle Scholar
  26. Trianni, V., Nolfi, S., and Dorigo, M. (2006). Cooperative hole-avoidance in a swarm-bot. Robotics and Autonomous Systems, 54(2):97–103.CrossRefGoogle Scholar
  27. Tsai, S., and Salinas, S.R. (1998). Fourth-order cumulants to characterize the phase transitions of a spin-1 Ising model. Brazilian Journal of Physics, 28(1):58–65.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Gianluca Baldassarre

There are no affiliations available

Personalised recommendations