Advertisement

A Turing Test for Emergence

  • Fabio Boschetti
  • Randall Gray
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Keywords

Turing Machine Cellular Automaton Causal Power Local Rule Downward Causation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V. (2000). Downward Causation. Aarhus University Press, Aarhus, Denmark.Google Scholar
  2. Arthur, W. (1994). Inductive behaviour and bounded rationality. The American Economic Review, 84:406–411.Google Scholar
  3. Arthur, W. (1998). Modeling market mechanism with evolutionary games. Europhysics News, 29:51–54.Google Scholar
  4. Atay, F., and Josty, J. (2003). On the emergence of complex systems on the basis of the coordination of complex behaviors of their elements. Santa Fe Institute Working Paper, 04-02-005.Google Scholar
  5. Bedau, M. A. (1997). Weak emergence. In Tomberlin, J., editor, Philosophical Perspectives: Mind, Causation, and World, volume 11, pages 375–399. Blackwell Publishers, Oxford.Google Scholar
  6. Bickhard, M. H. (2000). Emergence. In Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V., editors, Downward Causation, pages 322–348. University of Aarhus Press, Aarhus, Denmark.Google Scholar
  7. Boschetti, F. (2005). Improved resource exploitation by collective intelligence. In Zerger, A. and Argent, R. M., editors, MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2005, pages 518–523.ISBN:0-9758400-2-9.Google Scholar
  8. Butler, D. (2006). 2020 computing: Everything, everywhere. Nature, 440(7083):402–405.CrossRefGoogle Scholar
  9. Calude, C., Campbell, D. I., Svozil, K., and Stefanescu, D. (1995). Strong determinism vs. computability. In Depauli-Schimanovich, W., Koehler, E., and Stadler, F., editors, Downward Causation, pages 115–131. Kluwer Academic, Dordrecht.Google Scholar
  10. Campbell, D. T. (1974). Downward causation in hierarchically organized biological systems. In Ayala, F., and Dobzhansky, T., editors, Studies in the Philosophy of Biology, pages 179–186, University of California Press, Berkeley.CrossRefGoogle Scholar
  11. Chaitin, G. (1997). The Limits of Mathematics: A Course on Information Theory & Limits of formal reasoning. Springer, New York.zbMATHGoogle Scholar
  12. Cooper, B., and Odifreddi, P. (2003). Incomputability in nature. In Cooper, S. B., and Goncharov, S. S., editors, Computability and Models, pages 137–160. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
  13. Corning, P. (2005). The re-emergence of emergence: a venerable concept in search of a theory. In Holistic Darwinism: Synergy, Cybernetics, and the Bioeconomics of Evolution. University of Chicago Press, Chicago.CrossRefGoogle Scholar
  14. Crutchfield, J. (1994a). Is anything ever new? Considering emergence. In Cowan, G., Pines, D., and Melzner, D., editors, Complexity: Metaphors, Models, and Reality, SFI Series in the Sciences of Complexity XIX, pages 479–497. Addison-Wesley, Redwood City.Google Scholar
  15. Crutchfield, J. P. (1994b). The calculi of emergence: Computation, dynamics, and induction. Physica D, 75:11–54.CrossRefGoogle Scholar
  16. Darley, V. (1994). Emergent phenomena and complexity. In Brooks, R., and Maes, P., editors, Proceedings of Artificial Life IV. MIT Press, Cambridge, MA.Google Scholar
  17. Emmeche, C., Koppe, S., and Stjernfelt, F. (2000). Levels, emergence, and three versions of downward causation. In Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V., editors, Downward Causation, pages 13–34. University of Aarhus Press, Aarhus, Denmark.Google Scholar
  18. Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “Life.” Scientific American, 223:120–123.CrossRefGoogle Scholar
  19. Goldstein, J. (2002). The singular nature of emergent levels: Suggestions for a theory of emergence. Nonlinear Dynamics, Psychology, and Life Sciences, 6(4).Google Scholar
  20. Heylighen, F. (1991). Modelling emergence. World Futures: The Journal of General Evolution, 31(Special Issue on Emergence, G. Kampis, editor):89–104.Google Scholar
  21. Kauffman, S. (2000). Investigations. Oxford University Press.Google Scholar
  22. Kellett, O. (2006). A multi-faceted attack on the busy beaver problem. Master thesis, Rensselaer Polytechnic Institute, Troy, New York.Google Scholar
  23. Laughlin, R., and Pines, D. (2000). The theory of everything. Proceedings of the National Academy of Sciences, 97(1):28–31.Google Scholar
  24. Milner, R. (1993). Elements of interaction. Communications of the ACM Archive, 36(1):78–89.CrossRefGoogle Scholar
  25. Muggleton, S. (2006). 2020 computing: Exceeding human limits. Nature, 440(7083):409–410.CrossRefGoogle Scholar
  26. Ord, T. (2002). Hypercomputation: Computing more than the Turing machine. Technical report, University of Melbourne.Google Scholar
  27. Pattee, H. (1997). Causation, control, and the evolution of complexity. In Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V., editors, Downward Causation. University of Aarhus Press, Aarhus, Denmark.Google Scholar
  28. Pearl, J. (2000). Causality: Models, Reasoning and Inference. MIT Press, Cambridge, MA.zbMATHGoogle Scholar
  29. Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Vintage, London, Melbourne.zbMATHGoogle Scholar
  30. Penrose, R. (1994). Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press, Oxford.zbMATHGoogle Scholar
  31. Rabinowitz, N. (2005). Emergence: An algorithmic formulation. PhD thesis, The University of Western Australia.Google Scholar
  32. Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4):25–34.CrossRefGoogle Scholar
  33. Saygin, A., Cicekli, I., and Akman, V. (2000). Turing test: 50 years later. Minds and Machines, 10(4):463–518.CrossRefGoogle Scholar
  34. Shalizi, C. (2001). Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. PhD thesis, University of Michigan, Ann Arbor.Google Scholar
  35. Simonite, T. (2005). Seals net data from cold seas. Nature, 438:402–403.CrossRefGoogle Scholar
  36. Stannett, M. (2003). Computation and hypercomputation. Minds and Machines, 13(1):115–153.CrossRefGoogle Scholar
  37. Sterrett, S. (2000). Turing’s two tests for intelligence. Minds and Machines, 10(4):541–559.CrossRefGoogle Scholar
  38. Szalay, A., and Gray, J. (2006). 2020 computing: Science in an exponential world. Nature, 440(7083):409–410.CrossRefGoogle Scholar
  39. Turing, M. A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–265.MathSciNetzbMATHGoogle Scholar
  40. van Leeuwen, J., and Wiedermann, J. (2000). The Turing machine paradigm in contemporary computing. Technical Report UU-CS-2000-33, Institute of Information and Computing Sciences, Utrecht University.Google Scholar
  41. van Leeuwen, J., and Wiedermann, J. (2001a). Beyond the Turing limit–evolving interactive systems. In Pacholski, L. and Ruzicka, P., editors, Theory and Practice of Informatics, pages 90–109. Springer-Verlag, Berlin.Google Scholar
  42. van Leeuwen, J., and Wiedermann, J. (2001b). A computational model of interaction in embedded systems. Technical Report UU-CS-2001-02, Institute of Information and Computing Sciences, Utrecht University.Google Scholar
  43. van Leeuwen, J., and Wiedermann, J. (2003). The emergent computational potential of evolving artificial living systems. AI Communications, 15:205–215.MathSciNetGoogle Scholar
  44. Verbaan, P., van Leeuwen, J., and Wiedermann, J. (2004). Lineages of automata—a model for evolving interactive systems. In Karhumaki, J., Maurer, H., Paun, G., and Rozenberg, G., editors, Theory Is Forever, pages 268–281. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  45. Wiedermann, J. (2000). Fuzzy computations are more powerful than crisp ones. Technical Report V-828, Prague University.Google Scholar
  46. Wiedermann, J., and van Leeuwen, J. (2002). The emergent computational potential of evolving artificial living systems. AI Communications, 15(4):205–216.MathSciNetGoogle Scholar
  47. Wikipedia (2007). Loebner prize—Wikipedia, the free encyclopedia, available at: http://en.wikipedia.org/wiki/loebner prize. [Online; accessed 25-January-2007].Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Fabio Boschetti
  • Randall Gray

There are no affiliations available

Personalised recommendations