Advertisement

A Model for Self-Organizing Data Visualization Using Decentralized Multiagent Systems

  • Andrew Vande Moere
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Keywords

Cellular Automaton Data Item Multiagent System Cellular Automaton Data Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankerst, M., Berchtold, S., and Keim, D. A. (1998). Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In Proceedings of Symposium on Information Visualization (Infovis’98), pages 52–60, IEEE Computer Society, Washington DC, USA.Google Scholar
  2. Bartram, L., and Ware, C. (2002). Filtering and brushing with motion. Journal of Information Visualization, 1(1): 66–79.CrossRefGoogle Scholar
  3. Bentley, C. L., and Ward, M. O. (1996). Animating multidimensional scaling to visualize N-dimensional data sets. In Proceedings of Symposium on Information Visualization (Infovis’96), pages 72–73, IEEE Computer Society, Washington DC, USA.Google Scholar
  4. Brodlie, K. W., Brooke, J., Chen, M., Chisnall, D., Hughes, C. J., John, N. W. (2006). A framework for adaptive visualization. IEEE Visualization 2006, Baltimore, MD, IEEE Computer Society, Washington DC, USA.Google Scholar
  5. Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco.Google Scholar
  6. Chen, L., Xu, X., Chen, Y., and He, P. (2004). A novel ant clustering algorithm based on cellular automata. In Proceedings of International Conference of the Intelligent Agent Technology (IAT’04), pages 148–154, IEEE Computer Society, Washington DC, USA.Google Scholar
  7. Chi, E. H. (2000). A taxonomy of visualization techniques using the data state reference model. In Proceedings of IEEE Symposium on Information Visualization (Infovis), pages 69–75.Google Scholar
  8. Couzin, I. D., Krause, J., James, R., Ruxton, G. D., and Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218:1–11.MathSciNetCrossRefGoogle Scholar
  9. Davies, J. (2004). Why birds fly in formation: A new interpretation. Interpretive Birding, 5(2).Google Scholar
  10. Decker, K. S., and Sycara, K. (1997). Intelligent adaptive information agents. Journal of Intelligent Information Systems, 9(3):239–260.CrossRefGoogle Scholar
  11. Deneubourg, J., Goss, S., Franks, N., A., S. F., Detrain, C., and Chretian, L. (1990). The dynamics of collective sorting: Robot-like ants and ant-like robots. From Animals to Animats: 1st International Conference on Simulation of Adaptative Behaviour, pages 356–363.Google Scholar
  12. Ebert, A., Bender, M., Barthel, H., and Divivier, A. (2001). Tuning a component-based visualization system architecture by agents. In Proceedings of International Symposium on Smart Graphics, IBM T.J. Watson Research Center.Google Scholar
  13. Eick, S. G. (2001). Visualizing online activity. Communications of the ACM, 44(8):45–50.CrossRefGoogle Scholar
  14. Franklin, S., and Graesser, A. (1996). Is it an agent, or just a program? A taxonomy for autonomous agents. In Proceedings of Third International Workshop on Agent Theories, Architectures, and Languages (ATAL’96), pages 21–35, Springer, Heidelberg.Google Scholar
  15. Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game ‘Life.’ Scientific American 223:120–123.CrossRefGoogle Scholar
  16. Hamilton, W. D. (1971). Geometry for the selfish herd. Journal for Theoretical Biology, 31: 295–311.CrossRefGoogle Scholar
  17. Handl, J., and Meyer, B. (2002). Improved ant-based clustering and sorting in a document retrieval interface. In Proceedings of International Conference on Parallel Problem Solving from Nature (PPSN VII), volume 2439 of Lecture Notes of Computer Science, pages 913–923, Springer, Heidelberg.Google Scholar
  18. Handl, J., Knowles, J., and Dorigo, M. (2005). Ant-based clustering and topographic mapping. Artificial Life, 12(1):35–61.CrossRefGoogle Scholar
  19. Healey, C. G., Amant, R. S., and Chang, J. (2001). Assisted visualization of E-commerce auction agents. In Proceedings of Graphics Interface 2001, Ottawa, Canada, pages 201–208, Lawrence, Erlbaum Associate, New Jersey.Google Scholar
  20. Hellerstein, J. M., Chou, A., Hidber, C., Olston, C., Raman, V., Roth, T., et al. (1999). Interactive data analysis: The control project. IEEE Computer, 32(8):51.CrossRefGoogle Scholar
  21. Hiraishi, H., Sawai, H., and Mizoguchi, F. (2001). Design of a visualization agent for WWW information. Volume 2112 of Lecture Notes in Computer Science, pages 249–258, Springer, Heidelberg.Google Scholar
  22. Ishizaki, S. (1996). Multiagent model of dynamic design: Visualization as an emergent behavior of active design agents. In Proceedings of SIGCHI Conference on Human Factors in Computing Systems (CHI’96), Vancouver, British Columbia, Canada, pages 347–354.Google Scholar
  23. Jankun-Kelly, T. J., Ma, K.-L., and Gertz, M. (2002). A model for the visualization exploration process. In Proceedings of IEEE Visualization, Boston, IEEE Computer Society, Washington, DC, USA.Google Scholar
  24. Kadrovach, B. A., and Lamont, G. B. (2002). A particle swarm model for swarm-based networked sensor systems. In Proceedings of ACM Symposium on Applied Computing, Madrid, Spain, pages 918–924, ACM, New York.Google Scholar
  25. Kennedy, J., and Eberhart, R. C. (2001). Swarm Intelligence. Morgan Kaufmann, San Francisco.Google Scholar
  26. Kramer, P., and Yantis, S. (1997). Perceptual grouping in space and time: Evidence from the Ternus display. Perception and Psychophysics, 59(1):87–99.CrossRefGoogle Scholar
  27. Kuntz, A., Layzell, P., and Snyers, D. (1997). A colony of ant-like agents for partitioning in VLSI technology. In Proceedings of European Conference on Articial Life, pages 417–424. The MIT Prss, Cambridge.Google Scholar
  28. Labroche, N., Monmarché, N., and Venturini, G. (2002). A new clustering algorithm based on the chemical recognition system of ants. In Proceedings of European Conference on Artificial Intelligence, Lyon, France, pages 345–349, IOS Press, Amsterdam.Google Scholar
  29. Lander, J. (1998). Ocean spray in your face. Game Developer, 9–13.Google Scholar
  30. Lethbridge, T. C., and Ware, C. (1990). Animation using behavior functions. In T. Ichikawa, E. Jungert and R. R. Korfhage, editors, Visual Languages and Applications, pages 237-252. Plenum Press, New York.CrossRefGoogle Scholar
  31. Lumer, E. D., and Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. From Animals to Animats: Conference on Simulation of Adaptative Behaviour, pages 501–508, The MIT Press, Cambridge.Google Scholar
  32. Macgill, J., and Openshaw, S. (1998,). The use of flocks to drive a geographic analysis machine. In Proceedings of International Conference on GeoComputation, Bristol, United Kingdom. GeoComputation CD-ROM, Manchester.Google Scholar
  33. Mackinlay, J. D. (1986). Automating the design of graphical presentations of relational information. ACM Transactions on Graphics, 5(2): 110–141.CrossRefGoogle Scholar
  34. Marefat, M. M., Varecka, A. F., and Yost, J. (1997). An intelligent visualization agent for simulation-based decision support. Computing in Science and Engineering, 4(3), 72–82.Google Scholar
  35. Martin, A. (1999). Particle systems. retrieved August, 2006, from http://www.cs.wpi.edu/∼matt/courses/cs563/talks/psys.htmlGoogle Scholar
  36. Mason, K., Denzinger, J., and Carpendale, S. (2004). Negotiating Gestalt: Artistic expression and coalition formation in multiagent systems. In Proceedings of International Symposium on Smart Graphics, pages 103–115.Google Scholar
  37. Ogston, E., Overeinder, B., van Steen, M., and Brazier, F. (2003). A method for decentralized clustering in large multi-agent systems. In Proceedings of International Conference on Autonomous Agents and Multi-Agent Systems, Melbourne, Australia, pages 789–796, ACM, New York.Google Scholar
  38. Pham, B., and Brown, R. (2003). Multi-agent approach for visualisation of fuzzy systems. Volume 2659 of Lecture Notes in Computer Science, pages 995–1004, Springer, Berlin.Google Scholar
  39. Proctor, G., and Winter, C. (1998). Information flocking: Data visualisation in virtual worlds using emergent behaviours. In Proceedings of Virtual Worlds 98, Paris, France, pages 168–176, Springer, Berlin.Google Scholar
  40. Ramos, V., and Abraham, A. (2004). Evolving a stigmergic self-organized data-mining. In Proceedings of International Conference on Intelligent Systems, Design and Applications (ISDA-04), Budapest, Hungary, pages 725-730, IEEE Computer Society, Washington, DC, USA.Google Scholar
  41. Reeves, W. T. (1983). Particle systems: A technique for modeling a class of fuzzy objects. Computer-Graphics, 17(3):359–376.CrossRefGoogle Scholar
  42. Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4):25–34.CrossRefGoogle Scholar
  43. Roard, N., and Jones, M. W. (2006). Agent based visualization and strategies. In Proceedings of Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Pilzen, Czech Republic. University of West Bohemia, Plzen.Google Scholar
  44. Robinson, N., and Shapcott, M. (2002). Data mining information visualisation: Beyond charts and graphs. In Proceedings of International Conference on Information Visualisation, London, pages 577–583.Google Scholar
  45. Sadok, B. Y., and Engelbert, M. N. (2004). Emulating a cooperative behavior in a generic association rule visualization tool. In Proceedings of IEEE International Conference on Tools with Artificial Intelligence (ICTAI’04), Washington, DC, USA, pages 148–155, IEEE Computer Society, Washington, DC, USA.Google Scholar
  46. Schroeder, M., and Noy, P. (2001). Multi-agent visualisation based on multivariate data. In Proceedings of International Conference on Autonomous Agents, Montreal, Quebec, Canada, pages 85–91, ACM, New York.Google Scholar
  47. Senay, H., and Ignatius, E. (1994). A knowledge-based system for visualization design. IEEE Computer Graphics and Applications, 14(6):36–47.CrossRefGoogle Scholar
  48. Shneiderman, B. (1998). Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley.Google Scholar
  49. Stanton, A., and Unkrich, L. (Writers) (2003). Finding Nemo. In W. D. P. P. A. Studios (Producer), USA. Buena Vista Pictures / Walt Disney Pictures.Google Scholar
  50. SWCP. (2003). Historical Data for S&P 500 Stocks. Retrieved October, 2006, from http://kumo.swcp.com/stocksGoogle Scholar
  51. Tonnesen, D. (2001). Particle systems for artistic expression. In Proceedings of Subtle Technologies Conference, Toronto, Canada, pages 17–20, University of Toronto, Toronto.Google Scholar
  52. Torgerson, W. S. (1952). Multidimensional scaling. Psychometrika, 17:401–419.MathSciNetCrossRefGoogle Scholar
  53. Tory, M., and Möller, T. (2004). Rethinking visualization: A high-level taxonomy. In Proceedings of IEEE Symposium on Information Visualization (Infovis’04), Austin, Texas, pages 151–158.Google Scholar
  54. Tufte, E. R. (2001). The Visual Display of Quantitative Information. Graphics Press, Cheshire.Google Scholar
  55. Upson, C., Faulhaber, T. A., Jr., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J. (1989). The application visualization system: a computational environment for scientific visualization. IEEE Computer Graphics and Applications, 9:30–42.CrossRefGoogle Scholar
  56. van der Burg, J. (2000). Building an advanced particle system. Game Developer, 44–50.Google Scholar
  57. Vande Moere, A. (2004). Time-varying data visualization using information flocking boids. In Proceedings of Symposium on Information Visualization (Infovis’04), Austin, USA, pages 97–104.Google Scholar
  58. Vande Moere, A., and Clayden, J. J. (2005). Cellular ants: Combining ant-based clustering with cellular automata. In Proceedings of IEEE International Conference on Tools with Artificial Intelligence (ICTAI’05), pages 177-184.Google Scholar
  59. Vande Moere, A., Mieusset, K. H., and Gross, M. (2004). Visualizing abstract information using motion properties of data-driven infoticles. In Proceedings of Conference on Visualization and Data Analysis 2004 (IS&T/SPIE Symposium on Electronic Imaging), pages 33–44. San Jose, CA.Google Scholar
  60. Vande Moere, A., Clayden, J. J., and Dong, A. (2006). Data clustering and visualization using cellular automata ants. In Proceedings of ACS Australian Joint Conference on Artificial Intelligence (AI’06), Hobart, Australia, pages 826–836, Springer, Berlin.Google Scholar
  61. Von Neumann, J. (1966). Theory of Self-Reproducing Automata. University of Illinois Press, Chicago.Google Scholar
  62. Ware, C. (2000). Information Visualization Perception for Design. Morgan Kaufmann, San Francisco.Google Scholar
  63. Ware, C., Neufeld, E., and Bartram, L. (1999). Visualizing causal relations. In Proceedings of IEEE Symposium on Information Visualization (Infovis’99), San Francisco, CA, pages 39–42, IEEE Computer Society, Washington, DC, USA.Google Scholar
  64. Wojciech, B. (2001). Multivariate visualization techniques. Retrieved June 2006, from http://www.pavis.org/essay/multivariate_visualization_techniques.htmlGoogle Scholar
  65. Woolridge, M. (2001). Introduction to Multiagent Systems. Wiley, New York.Google Scholar
  66. Zambonelli, F., Mamei, M., and Roli, A. (2002). What can cellular automata tell us about the behavior of large multi-agent systems? In A. Omicini and J. Castro, editors, volume 2603 of Lecture Notes in Computer Science, pages 216–231. Springer, Berlin.Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Andrew Vande Moere

There are no affiliations available

Personalised recommendations