Advertisement

Immune System Support for Scheduling

  • Young Choon Lee
  • Albert Y. Zomaya
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Keywords

Schedule Problem Adaptive Immune System Intrusion Detection System Clonal Selection Task Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aickelin, U., and Cayzer, S. (2002). The danger theory and its application to artificial immune systems. In Timmis, J. and Bentley, P. J., editors, Proceedings of the First International Conference on Artificial Immune Systems (ICARIS), pages 141–148. University of Kent at Canterbury, September 2002. University of Kent at Canterbury Printing Unit.Google Scholar
  2. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., and McLeod, J. (2003). Danger theory: The link between AIS and IDS? Proceedings of the Second International Conference on Artificial Immune Systems (ICARIS), volume 2787 of Lecture Notes in Computer Science, pages 147–155. Edinburgh, UK, Springer.Google Scholar
  3. Ayara, M., Timmis, J., de Lemos, R., de Castro, L., and Duncan, R. (2002). Negative selection: How to generate detectors. In Timmis, J., and Bentley, P. J., editors, Proceedings of the First International Conference on Artificial Immune Systems (ICARIS), pages 89–98. University of Kent at Canterbury, September 2002. University of Kent at Canterbury Printing Unit.Google Scholar
  4. Bersini, H. (2002). The immune and the chemical crossover. IEEE Transactions on Evolutionary Computation, 6(3):306–313.CrossRefGoogle Scholar
  5. Burgess, M. (1998). Computer immunology. Proceedings of the 12th USENIX Conference on System Administration, pages 283–298. Boston, Massachusetts, USA, USENIX Association.Google Scholar
  6. Burnet, F. M. (1959). The Clonal Selection Theory of Acquired Immunity. Cambridge University Press. Cambridge.CrossRefGoogle Scholar
  7. Coello Coello, C.A., Rivera, D. C. and Cortés, N. C. (2003). Use of an artificial immune system for job shop scheduling. Proceedings of the Second International Conference on Artificial Immune Systems (ICARIS), volume 2787/2003 of Lecture Notes in Computer Science, pages 1–10. Edinburgh, UK, Springer.Google Scholar
  8. Costa, A. M., Vargas, P. A., Von Zuben, F. J. and Franca, P. M. (2002). Makespan minimization on parallel processors: An immune-based approach. Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02), volume 1, pages 920–925. IEEE Computer Society, Washington DC, USA.Google Scholar
  9. Cutello, V. and Nicosia, G. (2002). Multiple learning using immune algorithms. In Fourth International Conference on Recent Advances in Soft Computing (RASC-2002), pages 102-107. Nottingham. Springer-Verlag, Berlin.Google Scholar
  10. D’haeseleer, P., Forrest, S., and Helman, P. (1996). An immunological approach to change detection: Algorithms, analysis and implications. Proceedings of IEEE Symposium on Security and Privacy, pages 132–143. Oakland, CA, USA, IEEE Computer Society.Google Scholar
  11. Dasgupta, D., Cao, Y. and Yang, C. (1999). An immunogenetic approach to spectra recognition. In: Banzhaf, W., Daida, J. M., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M. J., and Smith, R. E., editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pages 149–155. Morgan Kaufmann, San Fransisco, LA, USA.Google Scholar
  12. Dasgupta, D., KrishnaKumar, K., Wong, D. and Berry, M. (2004). Negative selection algorithm for aircraft fault detection. Proceedings of the Third International Conference on Artificial Immune Systems (ICARIS), volume 3239 of Lecture Notes in Computer Science, pages 1–13. Springer Berlin.Google Scholar
  13. de Castro, L. N., and Timmis, J. (2002). Artificial Immune Systems: A New Computational Intelligence Approach. Springer-Verlag, London.zbMATHGoogle Scholar
  14. de Castro, L. N., and Von Zuben, F. J. (2001). AINET: An artificial immune network for data analysis. In Abbass, H. A., Sarker, R. A., and Newton, C. S., editors, Data Mining: A Heuristic Approach, chapter XII, pages 231–259. Idea Group Publishing Hershey, PA, USA.Google Scholar
  15. de Castro, L. N., and Von Zuben, F. J. (2002). Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, 6(3):239–251.CrossRefGoogle Scholar
  16. Engin, O., and Doyen, A. (2004). A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future Generation Computer Systems, 20(6):1083–1095.CrossRefGoogle Scholar
  17. Esponda, F., Ackley, E. S., Forrest, S. and Helman, P. (2005). On-line negative databases. International Journal of Unconventional Computing, 1(3):201–220.Google Scholar
  18. Farmer, J., Packard, N., and Perelson, A. (1986). The immune system, adaptation and machine learning. Physica D, 22:187–204.MathSciNetCrossRefGoogle Scholar
  19. Feng, Y.-J., and Feng, Z.-R. (2004). An immunity-based ant system for continuous space multi-modal function optimization. Proceedings of International Conference on Machine Learning and Cybernetics, volume 2, pages 1050–1054. IEEE Computer Society, Washington DC, USA.Google Scholar
  20. Forrest, S., Perelson, A. S., Allen, L. and Cherukuri, R. (1994). Self-nonself discrimination in a computer. Proceedings of IEEE Symposium Research in Security and Privacy, pages 202–212. IEEE Computer Society, Washington DC, USA.Google Scholar
  21. Gao, X.Z., Ovaska, S.J., Wang, X. and Chow, M.-Y. (2004). Neural networks-based negative selection algorithm with applications in fault diagnosis. Proceedings of International Conference on Systems, Man and Cybernetics, volume 4, pages 3408–3414.Google Scholar
  22. Garrett, S. (2005). How Do We Evaluate Artificial Immune Systems?. Evolutionary Computation, 13(2):145–177.CrossRefGoogle Scholar
  23. Gonzales, L.J., and Cannady, J. (2004). A self-adaptive negative selection approach for anomaly detection. Proceedings of Congress on Evolutionary Computation (CEC 04), volume 2, pages 1561–1568.Google Scholar
  24. Gonzalez, F., Dasgupta, D. and Kozma, R. (2002). Combining negative selection and classification techniques for anomaly detection. Proceedings of Congress on Evolutionary Computation (CEC’02), volume 1, pages 705–710.Google Scholar
  25. Grama, A., Gupta, A., Karypis, G. and Kumar, V. (2003). Introduction to Parallel Computing. 2nd Edition, Addison Wesley, Boston, MA, USA.zbMATHGoogle Scholar
  26. Hajela, P., and Yoo. J. S. (1999). Immune network modelling in design optimization. In Corne, D., Dorigo, M., and Glover, F., editors, New Ideas in Optimization, pages 203–215. McGraw Hill, London.Google Scholar
  27. Hofmeyr, S., and Forrest, S. (2000). Architecture for the artificial immune system. Evolutionary Computation, 8(4):443–473.CrossRefGoogle Scholar
  28. Jerne, N. (1974). Towards a network theory of the immune system. Annals of Immunology, 125:373–389.Google Scholar
  29. Kim, J., and Bentley, P.J. (2001). Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. Proceedings of Congress on Evolutionary Computation (CEC’01), volume 2, pages 1244–1252. IEEE Computer Society, Washington DC, USA.Google Scholar
  30. King, R. L., Russ, S. H., Lambert, A. B., and Reese, D. S. (2001). An artificial immune system model for intelligent agents. Future Generation Computer Systems, 17(4):335–343.CrossRefGoogle Scholar
  31. KrishnaKumar, K., Satyadas, A. and Neidhoefer, J. (1995). An immune system framework for integrating computational intelligence paradigms with applications to adaptive control. In Palaniswami, M., Attikiouzel, Y., Marks, R.J., II, Fogel, D., and Fukuda T., editors, Computational Intelligence A Dynamic System Perspective, pages 32–45, IEEE.Google Scholar
  32. Kwok, Y. K., and Ahmad, I. (1998). Benchmarking the task graph scheduling algorithms. Proceedings of First Merged International Parallel Symposium/Symposium on Parallel and Distributed Processing (IPPS/SPDP ‘98), pages 531–537. IEEE Computer Society, Washington DC, USA.Google Scholar
  33. Matzinger, P. (2002). The danger model: A renewed sense of self. Science, 296:301–305.CrossRefGoogle Scholar
  34. Mori, K., Tsukiyama, M. and Fukuda, T. (1998). Adaptive scheduling system inspired by immune system. Proceedings of International Conference on Systems, Man, and Cybernetics, volume 4, pages 3833–3837. IEEE Computer Society, Washington DC, USA.Google Scholar
  35. Ong, Z. X, Tay, J. C. and Kwoh, C. K. (2005). Applying the clonal selection principle to find flexible job-shop schedules. Proceedings of International Conference on Artificial Immune Systems (ICARIS), pages 442–455, Springer-Verlag Berlin.Google Scholar
  36. Stibor, T., Timmis, J. and Eckert, C. (2005). On the appropriateness of negative selection defined over Hamming shape-space as a network intrusion detection system. Proceedings of Congress on Evolutionary Computation, volume 2, pages 995–002. IEEE Computer Society, Washington DC, USA.Google Scholar
  37. Swiecicka, A., Seredynski, F., and Zomaya, A.Y. (2006). Multiprocessor scheduling and rescheduling with use of cellular automata and artificial immune system support. IEEE Transactions on Parallel and Distributed Systems, 17(3):253–262.CrossRefGoogle Scholar
  38. Timmis, J., and Neal, M. J. (2000). A resource limited artificial immune system for data analysis. Proceedings of ES 2000, pages 19–32, Springer.Google Scholar
  39. Topcuoglu, H., Hariri, S. and Wu, M. (2002). Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274.CrossRefGoogle Scholar
  40. Varela, F. J., and Coutinho, A. (1991). Second generation immune networks. Immunology Today, 12(55):159–166.CrossRefGoogle Scholar
  41. Wierzchon, S. T. (2000). Discriminative power of the receptors activated by k-contiguous bits rule. Journal of Computer Science and Technology, Special Issue on Research Computer Science, 1(3):1–13.Google Scholar
  42. Zuo, X.-Q., and Fan, Y.-S. (2005). Solving the job shop scheduling problem by an immune algorithm. Proceedings of International Conference on Machine Learning and Cybernetics, volume 6, pages 3282–3287. IEEE Computer Society, Washington DC, USA.Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Young Choon Lee
  • Albert Y. Zomaya

There are no affiliations available

Personalised recommendations