Advertisement

Self-organizing Nomadic Services in Grids

  • Tino Schlegel
  • Ryszard Kowalczyk
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Keywords

Resource Allocation Multiagent System Communication Cost Mobile Agent Network Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G., Angulo, D., Foster, I., Lanfermann, G., Lui, C., Radke, T., Seidel, E., and Shalf, J. (2001). The Cactus worm: Experiments with dynamic resource selection and allocation in a grid environment. International Journal of High-Performance Computing Applications, 15(4), 345–358.CrossRefGoogle Scholar
  2. Arthur, W. B. (1994). Inductive reasoning and bounded rationality. American Economic Review (Papers and Proceedings), 84(2), 406–411.Google Scholar
  3. Braun, P., and Rossak, W. R. (2005). Mobile Agents–Basic Concept, Mobility Models, and the Tracy Toolkit. Morgan Kaufmann San Francisco, CA, USA.Google Scholar
  4. Bruneo, D., Scarpa, M., Zaia, A., and Puliafito, A. (2003). Communication paradigms for mobile grid users. In the Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003 (CCGrid 2003), 669, Tokyo, Japan.Google Scholar
  5. Buyya, R. (2002). Economic-based Distributed Resource Management and Scheduling for Grid Computing. Monash University, Melbourne.zbMATHGoogle Scholar
  6. Buyya, R., Abramson, D., Giddy, J., and Stockinger, H. (2002). Economic models for resource management and scheduling in grid computing. Special issue on grid computing environments, Journal of Concurrency and Computation: Practice and Experience, 13–15(14), 1507–1542.CrossRefGoogle Scholar
  7. Buyya, R., Chapin, S., and DiNucci, D. (2000). Architectural models for resource management in the grid. In Proceedings of the First International Workshop on Grid Computing, 18–35, Springer, LNCS, Bangalore, India.Google Scholar
  8. Challet, D., Marsili, M., and Ottino, G. (2004). Shedding light on El Farol. Physica A, 332, 469–482.MathSciNetCrossRefGoogle Scholar
  9. Challet, D., and Zhang, Y. C. (1997). Emergence of cooperation and organization in an evolutionary game. Physica A, 407(246).Google Scholar
  10. Clearwater, S. H. (1996). Market-based Control. A Paradigm for Distributed Resource Allocation. World Scientific, Singapore.CrossRefGoogle Scholar
  11. Fluess, C. (2005). Capacity Planning of Mobile Agent Systems Designing Efficient Intranet Applications. PhD Thesis, Universität Duisburg-Essen, Germany.Google Scholar
  12. Fontana, J. (2004). Service-oriented Hype to Meet Hard Realities. Network World. http://www.networkworld.com/news/2004/11010Google Scholar
  13. Foster, I., and Kesselman, C. (1997). Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputing Applications, 11(2), 115–129, MIT press; ISSN 1078–3482.Google Scholar
  14. Frey, J., Tannenbaum, T., Foster, I., Livny, M., and Tuecke, S. (2002). Condor-G: A computation management agent for multi-institutional grids. Cluster Computing, 5(3), 237–246.CrossRefGoogle Scholar
  15. Galstyan, A., Kolar, S., and Lerman, K. (2003). Resource allocation games with changing resource capacities. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo, editors, Proceedings of the Second International Joint Conference on Autonomous Agents and Multi-Agent Systems, 2003, Melbourne, Australia, July 14-18, 2003, 145–152, ACM Press, New York.Google Scholar
  16. Grosu, D., Chronopoulos, A. T., and Leung, M.-Y. (2002). Load balancing in distributed systems: An approach using cooperative games. In Proceedings of the International Parallel and Distributed Processing Symposium, Ft. Lauderdale, FL. IEEE Computer Society, Washington, DC, USA, 196.Google Scholar
  17. Mainland, G., Parkes, D. C., and Welsh, M. (2005). Decentralized Adaptive Resource Allocation for Sensor Networks. In Proceedings of the 2nd USENIX Symposium on Network Systems Design and Implementation(NSDI ’05), May 2005, Boston, MA, USA.Google Scholar
  18. Manvi, S. S., Birje, M. N., and Prasad, B. (2005). An agent-based resource allocation model for computational grids. Multiagent and Grid Systems—An International Journal, 1(1), 17–27.CrossRefGoogle Scholar
  19. OASIS. (2006). Software Oriented Architecture (SOA) Reference Model. Available at http://www.oasis-open.org/committees/download.php/19361/soa-rm-cs.pdf, 15.09.2006.Google Scholar
  20. Outtagarts, A., Kadoch, M., and Soulhi, S. (1999). Client-server and mobile agent: performances comparative study in the management of MIBs. In Mobile Agents for Telecommunication Applications, Proceedings of the First International Workshop (MATA 1999), Ottawa (Canada), October 1999, World Scientific Publishing.Google Scholar
  21. Picco, G. P. (1998). Understanding, Evaluating, Formalizing, and Exploiting Code Mobility. Politecnico di Torino.Google Scholar
  22. Puliafito, A., Riccobene, S., and Scarpa, M. (2001). Which paradigm should I use? An analytical comparison of the client-server, remote evaluation and mobile agent paradigms. Concurrency and Computation: Practice and Experience, 13(1), 71–94.CrossRefGoogle Scholar
  23. Samaras, G., Dikaiakos, M. D., Spyrou, C., and Liverdos, A. (1999). Mobile agent platforms for web-databases: A qualitative and quantitative assessment. In Proceedings of the First International Symposium on Agent Systems and Applications (ASA’99)/Third International Symposium on Mobile Agents (MA’99), Palm Springs, CA, IEEE Computer Society Press, Washington, DC, USA.Google Scholar
  24. Strasser, M., and Schwehm, M. (1997). A performance model for mobile agent systems. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’97), pages 1132–1140, CSREA Press, Las Vegas, NV, USA, June 30–July 3, 1997.Google Scholar
  25. Theilmann, W., and Rothermel, K. (2000). Dynamic distance maps of the internet. In Proceedings of the 2000 IEEE INFOCOM Conference, Tel Aviv March 2000 IEEE Computer Society Press, Washington, DC, USA, pages 275–284.Google Scholar
  26. Vigna, G. (2004). Mobile agents: Ten reasons for failure. In Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04), pages 298–299. IEEE Computer Society, Los Alamitos, CA, USA.CrossRefGoogle Scholar
  27. Waldrop, M. M. (1992). Complexity: The Emerging Science at the Edge of Order and Chaos. (1st Edition) Simon and Schuster, New York.Google Scholar
  28. Wolski, R., Plank, J. S., Brevik, J., and Bryan, T. (2001). Analyzing market-based resource allocation strategies for the computational grid. International Journal of High Performance Computing Applications, 15, pages 258–281, Sage Science Press.CrossRefGoogle Scholar
  29. Wooldridge, M. (2002). An Introduction to Multi-Agent Systems. Wiley. John Wiely & Sons, Chichester, England.Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Tino Schlegel
  • Ryszard Kowalczyk

There are no affiliations available

Personalised recommendations