Advertisement

Time in Anatomy

  • Duncan Davidson
Part of the Computational Biology book series (COBO, volume 6)

Keywords

Anatomical Structure Temporal Relation Class Level Renal Vesicle System Biology Markup Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Aitken. Formalising concepts of species, sex and developmental stage in anatomical ontologies. Bioinformatics, 21:2773–2779, 2005.CrossRefGoogle Scholar
  2. 2.
    J.F. Allen and G. Ferguson. Actions and events in interval temporal logic. J. Logic and Computation, 4(5):513–579, 1994. 11 Time in Anatomy 245CrossRefMathSciNetGoogle Scholar
  3. 3.
    C.G. Arques, R. Doohan, J. Sharpe, and M. Torres. Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme. Development, 134:3713– 3722, 2007.CrossRefGoogle Scholar
  4. 4.
    A. Aulehla and B. Herrmann. Segmentation in vertebrates: clock and gradient finally joined. Genes and Dev., 18:2060–2067, 2004.CrossRefGoogle Scholar
  5. 5.
    J.B.L. Bard, M.H. Kaufman, C. Dubreuil, R.M. Brune, A. Burger, R.A. Baldock, and D.R. Davidson. An internet-accessible database of mouse developmental anatomy based on a systematic nomenclature. Mechanisms of Development, 74:111–120, 1998.CrossRefGoogle Scholar
  6. 6.
    J. De Beule. Creating temporal categories for an ontology of time. In R.Verbrugge, N. Taatgen, and L. Schomaker, editors, BNAIC-04, pages 107–114, 2004.Google Scholar
  7. 7.
    T. Bittner. Approximate qualitative temporal reasoning. Annals Math. Artificial. Intelligence, 36:39–80, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    H. Bolouri and E.H. Davidson. Modeling dna sequence-based cis-regulatory gene networks. Develop. Biol., 246:2–13, 2002.CrossRefGoogle Scholar
  9. 9.
    M. Brochhausen. The derives from relation in biomedical ontologies. In MIE 2006 Studies in Health Technology and Informatics, volume 124, 2006.Google Scholar
  10. 10.
    A. Burger, D. Davidson, and R. Baldock. Formalization of mouse embryo anatomy. Bioinformatics, 20:259–267, 2004.zbMATHCrossRefGoogle Scholar
  11. 11.
    L. Calzone, N. Chabrier-Rivier, F. Fages, L. Gentils, and S. Soliman. Machine learning bio-molecular interactions from temporal logic properties. In G. Plotkin, editor, Proceedings of Computational Methods in Systems Biology (CMSB), 2005.Google Scholar
  12. 12.
    L. Chittaro and A. Montanari. Temporal representation and reasoning in artificial intelligence: issues and approaches. Baltzer Journals, July 2 2002.Google Scholar
  13. 13.
    R.L. Chow and R.A.Lang. Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol., 17:255–296, 2001.CrossRefGoogle Scholar
  14. 14.
    D.L. Cook, J.L.V. Mejino, and C. Rosse. Evolution of a foundational model of phisiology: symbolic representation for functional bioinformatics. In M. Fieschi et al, editor, MEDINFO, Amseterdam, 2004. IOS Press.Google Scholar
  15. 15.
    G. Von Dassow, E. Meir, E.M. Munro, and G.M. Odell. The segment polarity network is a robust developmental module. Nature, 406:188–192, 2000.CrossRefGoogle Scholar
  16. 16.
    R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 49:61–95, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    G.R. Dressler. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol., 22:509–529, 2006.CrossRefGoogle Scholar
  18. 18.
    J. Dubrulle and O. Pourqui’e. Coupling segmentation to axis formation. Development, 131:5783–5793, 2004.CrossRefGoogle Scholar
  19. 19.
    P. Ducy, T.Schinke, and G. Karsenty. The osteoblast: a sophisticated fibroblast under central surveillance. Science, 289:1501–1504, 2000.CrossRefGoogle Scholar
  20. 20.
    P.L. Williams et al. Gray’s Anatomy. Churchill Livingstone, London, 38th edition, 1995.Google Scholar
  21. 21.
    F. Fages. From syntax to semantics in systems biology towards automated reasoning tools. In C. Priami et al, editor, Trans. On Comput. Syst. Biol. IV, number 3939 in LNBI, pages 68–70, 2006.Google Scholar
  22. 22.
    J.B. Gross, J. Hanken, E. Oglesby, and N. Marsh-Armstrong. Use of a ROSA26:GFP transgenic line for long-term xenopus fate-mapping studies. J. Anat., 209:401–413, 2006.CrossRefGoogle Scholar
  23. 23.
    P. Haas and D. Gilmour. chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Developmental Cell, 10:673–680, 2006.CrossRefGoogle Scholar
  24. 24.
    A-K. Hadjantonakis and V.E. Papiaoannou. Dynamic in vivo imaging and cell tracking using a fluorescent protein fusion in mice. BMC Biotechnology, 4(33), 2004. 246 Duncan DavidsonGoogle Scholar
  25. 25.
    M.A. Haendel, F. Neuhaus, D.S. Osumi-Sutherland, P.M. Mabee, J.L.V. Mejino Jr., C.J. Mungal, and B.Smith. Caro - the common anatomy reference ontology. In A. Burger, D. Davidson, and R. Baldock, editors, Anatomy Ontologies for Bioinformatics: Principles and Practice, New York, In press. Springer.Google Scholar
  26. 26.
    V. Hamburger and H.L. Hamilton. A series of normal stages in the development of the chick embryo. J. Morph., 88:49–92, 1951.CrossRefGoogle Scholar
  27. 27.
    R.G. Harrison. Harrison stages and description of the normal development of the spotted salamander, ambysoma punctatum (linn). In S. Willens, editor, Organisation of the embryo, pages 44–66. Yale University Press, 1969.Google Scholar
  28. 28.
    T.F. Hayamizu, M. Mangan, J.P. Corradi, J.A. Kadin, and M. Ringwald. The adult mouse anatomical dictionary: a tool for annotating and integrating data. Genome Biol., 6(3):R29, 2005.CrossRefGoogle Scholar
  29. 29.
    Y. Hirose, Z.M. Varga, H. Kondoh, and M. Furutani-Seiki. Single cell lineage and regionalisation of cell populations during medaka neurulation. Development, 131:2553–2563, 2004.CrossRefGoogle Scholar
  30. 30.
    J.R. Hobbs and J. Pustejovsky. Annotating and reasoning about time and events. In Proceedings of AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning, March 2003.Google Scholar
  31. 31.
    M. Hucka, A. Finney, and H.M. Sauro et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19:524–531, 2003. See also http://www.sbml.org/for more recent updates.Google Scholar
  32. 32.
    T. Iwamatsu. Stages of normal development in the medaka orysias latipes. Zool. Sci., 11:825–839, 1994.Google Scholar
  33. 33.
    C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, and T.F. Schilling. Stages of embryonic development of the zebrafish. Dev. Dyn., 203:253–310, 1995.Google Scholar
  34. 34.
    H. Kitano, A. Funahashi, Y.Matsuoka, and K. Oda. Using process diagrams for the graphical representation of biological networks. Nature Biotechnology, 23:961–966, 2005.CrossRefGoogle Scholar
  35. 35.
    W. Kritz and L. Bankir. A standard nomenclature for structures of the kidney. Kidney Int., 33:1–7, 1988.CrossRefGoogle Scholar
  36. 36.
    R.Y.N. Lee and P.W Sternberg. Building a cell and anatomy ontology of caenorhabditis elegans. Comparartive and Functional Genomics, 4:121–126, 2003.CrossRefGoogle Scholar
  37. 37.
    M.H. Little, J. Brennan, K. Georgas, J.A. Davies, D.R. Davidson, R.A. Baldock, A. Beverdam, J.F. Bertram, and B. Capel. A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 7:680–699, 2007.CrossRefGoogle Scholar
  38. 38.
    W. Ma, L. Lai, Q. Ouyang, and C.Tang. Robustness and modular design of the drosophila segment polarity network. Molecular Systems Biology, 2:70, 2006.CrossRefGoogle Scholar
  39. 39.
    S.C. Manolagas. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Rev., 21:115–137, 2000.CrossRefGoogle Scholar
  40. 40.
    M.J. Martin and J.C Buckland-Wright. A novel mathematical model identifies potential factors regulating bone apposition. Calcif. Tissue Int., 77:250–260, 2005.CrossRefGoogle Scholar
  41. 41.
    J.L.V. Mejino, A.V. Agoncillo, K.L. Rickard, and C. Rosse. Representing complexity in part-whole relationships within the foundational model of anatomy. In Proc AMIA Symp, pages 450–454, 2003.Google Scholar
  42. 42.
    P.D. Nieuwkoop and J. Faber. Normal Table of Xenopus laevis.3rd edition, 1994.Google Scholar
  43. 43.
    Y.J. Passamaneck, A.DiGregorio, V.E. Papaioannou, and A-K. Hadjantonakis. Live imaging of fluorescent proteins in chordate embryos: From ascidians to mice. Microscopy Research and Technique, 69:160–167, 2006. 11 Time in Anatomy 247CrossRefGoogle Scholar
  44. 44.
    M. Peleg, I. Yeh, and R.B. Altman. Modelling biological processes using workflow and petri net models. Bioinformatics, 18:825–837, 2002.CrossRefGoogle Scholar
  45. 45.
    C. Rosse and J.V.L. Mejino. A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform., 36:478–500, 2003.CrossRefGoogle Scholar
  46. 46.
    K. Saha and D.V. Schaffer. Signal dynamics in sonic hedgehog tissue patterning. Development, 133:889–900, 2006.CrossRefGoogle Scholar
  47. 47.
    B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lomax, C. Mungall, F. Neuhaus, A. Rector, and C. Rosse. Relations in biomedical ontologies. Genome Biology, 6(5):r46, 2005.CrossRefGoogle Scholar
  48. 48.
    L. Strömbäck and P. Lambrix. Prepresentations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX. Bioinformatics, 21:4401–4407, 2005.CrossRefGoogle Scholar
  49. 49.
    S.L. Teitelbaum and F.P Ross. Genetic regulation of osteoclast development and function. Nature Reviews Genetics, 4:638–649, 2003.CrossRefGoogle Scholar
  50. 50.
    K. Theiler. The House Mouse: Atlas of Embryonic Development.Springer-Verlag, New York, 1989.Google Scholar
  51. 51.
    P. Tomancak, A. Beaton, R. Weiszmann, E. Kwan, S.Q. Shu, and S.E. Lewis. Systematic determination of patterns of gene expression during drosophila embryogenesis. Genome Biology, 3(12), 2002.Google Scholar
  52. 52.
    M. Vilain, H. Kautz, and P.van Beek. Constraint propagation algorithms for temporal reasoning: a revised report. In Readings about qualitative reasoniung about physical systems., 1989. cs.rochester.edu.Google Scholar
  53. 53.
    N. Wanek, K. Muneoka, G. Holler-dinsmore, R. Burton, and S.V. Bryant. A staging system for mouse limb development. J. Exp. Zool., 249:41–49, 1989.CrossRefGoogle Scholar
  54. 54.
    C.J. Wong and R.A. Liversage. Limb developmental stages of the newt notophthalmus viridescens. Int. J. Dev. Biol., 49:375–389, 2005.CrossRefGoogle Scholar

Copyright information

© Albert Burger, Duncan Davidson, Richard Baldock 2008

Authors and Affiliations

  • Duncan Davidson

There are no affiliations available

Personalised recommendations