Meningiomas pp 137-145 | Cite as

Meningioma Tumorigenesis: An Overview of Etiologic Factors

  • Michael J. Link
  • Arie Perry

Almost without fail, one of the first questions a patient with a meningioma asks is, “What caused my tumor?” Many possible etiologic factors have been proposed during the last century. Solid epidemiologic evidence for most of these factors has proven fleeting. The availability and application of molecular biology techniques to investigate meningioma tumorigenesis, however, has revealed many insights into how these tumors develop and progress on the cellular level. Not only will further understanding of meningioma tumorigenesis answer the patient's “first” question, it may also lead to a better molecular classification to complement the current morphologic classification of meningiomas (see Chapter 5) and, of course, hopefully lead to novel therapeutic approaches to treat these tenacious tumors. Somewhat confounding efforts to elucidate the cause of meningioma is a lack of universal agreement on the cell of origin for all meningiomas. Most meningiomas likely arise from mesodermal arachnoid cap cells normally found at the apex of arachnoid granulations.1,2 Cleland, in 1846, is credited with first correlating these cells to meningioma formation.3 They are found adjacent to major venous sinuses where the majority of meningiomas occur, and the normal arachnoid cap cells histologically resemble meningothelial meningiomas. However, meningiomas may occur at unusual sites such as choroid plexus,4,5 within bone,6,7 or, very rarely, outside the neural axis.8 For these tumors a different cell of origin may be possible, or they may arise from heterotopic meningothelial rests.


Tinea Capitis Atomic Bomb Survivor Intracranial Meningioma Cellular Telephone Salivary Gland Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O'Rahilly R, Muller F. The meninges in human development. J Neuropathol Exp Neurol 1986;45:588–608.PubMedCrossRefGoogle Scholar
  2. 2.
    Drummond KJ, Zhu JJ, Black PM. Meningiomas: updating basic science, management, and outcome. Neurologist 2004;10:113–130.PubMedCrossRefGoogle Scholar
  3. 3.
    Cleland J. Description of two tumours adherent to the deep surface of the dura-mater. Glasgow Med J 1864;11:148–159.Google Scholar
  4. 4.
    Nakamura M, Roser F, Bundschuh O, et al. Intraventricular meningiomas: a review of 16 cases with reference to the literature. Surg Neurol 2003;59:491–504.PubMedCrossRefGoogle Scholar
  5. 5.
    Criscuolo GR, Symon L. Intraventricular meningioma. A review of 10 cases of the National Hospital, Queen Square (1974– 1985) with reference to the literature. Acta Neurochir 1986;83:83–91.CrossRefGoogle Scholar
  6. 6.
    Crawford TS, Kleinschmidt-DeMasters BK, Lillehei KO. Primary intraosseous meningioma. Case report. J Neurosurg 1995;83:912–915.PubMedCrossRefGoogle Scholar
  7. 7.
    Lang FF, Macdonald OK, Fuller GN, DeMonte F. Primary extradural meningiomas: a report on nine cases and review of the literature from the era of computerized tomography scanning. J Neurosurg 2000;93:940–950.PubMedCrossRefGoogle Scholar
  8. 8.
    Shuangshoti S. Primary meningiomas outside the central nervous system. In: Al Mefty O, ed. Meningiomas. New York: Raven, 1991:107–128.Google Scholar
  9. 9.
    Radhakrishnan K, Mokri B, Parisi JE, et al. The trends in incidence of primary brain tumors in the population of Rochester, Minnesota. Ann Neurol 1995;37:67–73.PubMedCrossRefGoogle Scholar
  10. 10.
    CBTRUS. Statistical Report: Primary brain tumors in the United States, 1997–2001. Hinsdale, IL: Central Brain Tumor Registry of the United States, 2004.Google Scholar
  11. 11.
    Cushing H. Intracranial Tumors. Notes Upon a Series of Two Thousand Verified Cases. Springfield, IL: Charles C Thomas, 1932.Google Scholar
  12. 12.
    Grant FC. A study of the results of surgical treatment in 2326 consecutive patients with brain tumors: the national survey of intracranial neoplasms. Neurology 1956;32:219–226.Google Scholar
  13. 13.
    Zimmerman HM. Brain tumors: their incidence and classification in man and their experimental production. Ann NY Acad Sci 1969;159:337–359.CrossRefGoogle Scholar
  14. 14.
    Schoenberg GS, Christine BW, Whisnant JP. The descriptive epidemiology of primary intracranial neoplasms: The Connecticut experience. Am J Epidemiol 1976;104:499–510.PubMedGoogle Scholar
  15. 15.
    Kurland LT, Schoenberg BS, Annegers JF, et al. The incidence of primary intracranial neoplasms in Rochester, Minnesota, 1935–1977. Ann NY Acad Sci 1982;381:6–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Preston-Martin S, Henderson BE, Peters JM. Descriptive epidemiology of central nervous system neoplasms in Los Angeles County. Ann NY Acad Sci 1982;381:202–208.PubMedCrossRefGoogle Scholar
  17. 17.
    Fogelholm R, Uutela T, Murros K. Epidemiology of central nervous system neoplasms: a regional survey in central Finland. Acta Neurol Scand 1984;69:129–136.PubMedCrossRefGoogle Scholar
  18. 18.
    Walker AE, Robins H, Weinfeld FD. Epidemiology of brain tumors: the national survey of intracranial neoplasms. Neurology 1985;32:219–226.Google Scholar
  19. 19.
    Sutherland GR, Florell R, Louw D, et al. Epidemiology of primary intracranial neoplasms in Manitoba, Canada. Can J Neurol Sci 1987;14:586–592.PubMedGoogle Scholar
  20. 20.
    Kuratsu J, Ushio Y. Epidemiological study of primary intracra-nial tumors in elderly people. J Neurol Neurosurg Psychiatry 1997;63:116–118.PubMedCrossRefGoogle Scholar
  21. 21.
    Kirsch M, Santarius T, Black P. Molecular biology of meningio-mas and peripheral nerve sheath tumors. In: Raffel C, Harsh G, eds. The Molecular Basis of Neurosurgical Disease. Baltimore: Congress of Neurological Surgeons, 1996:126–145.Google Scholar
  22. 22.
    Goodwin JW, Crowley J, Eyre HJ, et al. A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J Neurooncol 1993;15:75–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Carroll R, Glowacka D, Dashner K, Black P. Progesterone and glucocorticoid receptor activation in meningiomas. Cancer Res 1993;53:1312–1316.PubMedGoogle Scholar
  24. 24.
    Carroll R, Zhang J, Dashner K, et al. Androgen receptor expression in meningiomas. J Neurosurg 1995;82:453–460.PubMedCrossRefGoogle Scholar
  25. 25.
    Wigertz A, Lonn S, Mathiesen T, et al. Risk of brain tumors associated with exposure to exogenous female sex hormones. Am J Epidemiol 2006;164:629–636.PubMedCrossRefGoogle Scholar
  26. 26.
    Jhawar BS, Fuchs CS, Colditz GA, Stampfer MJ. Sex steroid hormone exposures and risk for meningioma. J Neurosurg 2003;99:848–853.PubMedCrossRefGoogle Scholar
  27. 27.
    Schrell U, Fahlbusch R, Adams E, et al. Growth of cultured human cerebral meningiomas is inhibited by dopaminergic agents. Presence of high affinity dopamine-D1 receptors. J Clin Endocrinol Metab 1990;71:1669–1671.Google Scholar
  28. 28.
    Carroll RS, Schrell UM, Zhang J, et al. Dopamine D1, dopamine D2, and prolactin receptor messenger ribnucleic acid expression by the polymerase chain reaction in human meningiomas. Neu-rosurgery 1996;38:367–375.Google Scholar
  29. 29.
    Schulz S, Pauli SU, Schulz S, et al. Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst2A. Clin Cancer Res 2000;6:1865–1874.PubMedGoogle Scholar
  30. 30.
    Friend K, Radinsky R, McCutcheon I. Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J Neurosurg 1999;91:93–99.PubMedCrossRefGoogle Scholar
  31. 31.
    Whittle IR, Smith C, Navoo P, Collie D. Meningiomas. Lancet 2004;363:1535–1543.PubMedCrossRefGoogle Scholar
  32. 32.
    Giordano C, Lamouche M. Meningiomes en Cote D'Ivoire. Afr J Med Sci 1973;4:249–263.Google Scholar
  33. 33.
    Odeku EL, Adeloye A. Cranial meningiomas in the Nigerian Africans. Afr J Med Sci 1973;4:275–287.PubMedGoogle Scholar
  34. 34.
    Manfredonia M. Tumors of the nervous system in the African in Eritrea (Ethiopia). Afr J Med Sci 1973;4:383–387.PubMedGoogle Scholar
  35. 35.
    Levy LF. Brain tumors in Malawi, Rhodesia and Zambia. Afr J Med Sci 1973;4:393–397.PubMedGoogle Scholar
  36. 36.
    Cushing H, Eisenhardt L. Meningiomas: their classification, regional behaviour, life history, and surgical end results. Springfield, IL: Charles C Thomas, 1938.Google Scholar
  37. 37.
    Preston-Martin S, Pogoda JM, Schlehofer B, et al. An international case-control study of adult glioma and meningioma: the role of head trauma. Int J Epidemiol 1998;27:579–586.PubMedCrossRefGoogle Scholar
  38. 38.
    Phillips LE, Koepsell TD, van Belle G, et al. History of head trauma and risk of intracranial meningioma: population-based case-control study. Neurology 2002;58:1849–1852.PubMedGoogle Scholar
  39. 39.
    Parker H, Kernohan J. The relation of injury and glioma of the brain. J Am Med Assoc 1931;97:535–539.Google Scholar
  40. 40.
    Choi N, Schuma L, Gullen W. Epidemiology of primary central nervous system neoplasms II. Case-control study. Am J Epidemiol 1970;91:467–485.Google Scholar
  41. 41.
    Bondy M, Ligon BL. Epidemiology and etiology of intracranial meningiomas: a review. J Neurooncol 1996;29:197–205.PubMedCrossRefGoogle Scholar
  42. 42.
    Inskip PD, Mellemkjaer L, Gridley G, Olsen JH. Incidence of intracranial tumors following hospitalization for head injuries (Denmark). Cancer Causes Control 1998;9:109–116.PubMedCrossRefGoogle Scholar
  43. 43.
    Annegars JF, Laws ER Jr, Kurland LT, Grabow JD. Head trauma and subsequent brain tumors. Neurosurgery 1979;4:203–206.Google Scholar
  44. 44.
    Eddy BE, Borman GS, Grubbs GE, Young RD. Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology 1962;17:65–75.PubMedCrossRefGoogle Scholar
  45. 45.
    Gerber P, Kirschstein RL. SV40-induced ependymomas in newborn hamsters. I. Virus-tumor relationships. Virology 1962;18:582–588.Google Scholar
  46. 46.
    Brinster RL, Chen HY, Messing A, et al. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 1984;37:367–379.PubMedCrossRefGoogle Scholar
  47. 47.
    Pinkert CA, Brinster RL, Palmiter RD, et al. Tumorigenesis in transgenic mice by a nuclear transport-defective SV40 large T-antigen gene. Virology 1987;160:169–175.PubMedCrossRefGoogle Scholar
  48. 48.
    Weiss AF, Portmann R, Fischer H, et al. Simian virus 40-related antigens in three human meningiomas with defined chromosomal loss. Proc Natl Acad Sci USA 1975;72:609–613.PubMedCrossRefGoogle Scholar
  49. 49.
    Weiss AF, Zang KD, Birkmayer GD, Miller F. SV40 related papova-viruses in human meningiomas. Acta Neuropathol (Berl) 1976;34:171–174.CrossRefGoogle Scholar
  50. 50.
    Scherneck S, Lubbe L, Geissler E, et al. Detection of simian virus 40 related T-antigen in human meningiomas. Zentralbl Neurochir 1979;40:121–130.PubMedGoogle Scholar
  51. 51.
    Zimmermann W, Schernick S, Geissler E, Nisch G. Demonstration of SV 40-related tumour antigen in human meningiomas by different hamster SV 40-T-antisera. Acta Virol 1981;25(4):199–204.PubMedGoogle Scholar
  52. 52.
    Ibelgaufts H, Jones KW. Papovavirus-related RNA sequences in human neurogenic tumours. Acta Neuropathol (Berl) 1982;56:118–122.CrossRefGoogle Scholar
  53. 53.
    Arrington AS, Moore MS, Butel JS. SV40-positive brain tumor in scientist with risk of laboratory exposure to the virus. Onco-gene 2004;23(12):2231–2235.CrossRefGoogle Scholar
  54. 54.
    Weggen S, Bayer TA, von Deimling A, et al. Low frequency of SV40, JC and BK polyomavirus sequences in human medul-loblastomas, meningiomas and ependymomas. Brain Pathol 2000;10:85–92.PubMedGoogle Scholar
  55. 55.
    Sabatier J, Uro-Coste E, Benouaich A, et al. Immunodetec-tion of SV40 large T antigen in human central nervous system tumours. J Clin Pathol 2005;58:429–431.PubMedCrossRefGoogle Scholar
  56. 56.
    Rollison DE, Utaipat U, Ryschkewitsch C, et al. Investigation of human brain tumors for the presence of polyomavirus genome sequences by two independent laboratories. Int J Cancer 2005;113:769–774.PubMedCrossRefGoogle Scholar
  57. 57.
    Poltermann S, Schlehofer B, Steindorf K, et al. Lack of association of herpesviruses with brain tumors. J Neurovirol 2006;12:90–99.PubMedCrossRefGoogle Scholar
  58. 58.
    Independent Expert Group on Mobile Phones. Mobile Phones and Health. Chilton: National Radiological Protection Board, 2000.Google Scholar
  59. 59.
    Valberg PA. Radio frequency radiation (RFR): the nature of exposure and carcinogenic potential. Cancer Causes Control 1997;8:323–332.PubMedCrossRefGoogle Scholar
  60. 60.
    Hardell L, Nasman A, Pahlson A, et al. Use of cellular telephones and the risk of brain tumors: a case-control study. Int J Oncol 1999;15:113–116.PubMedGoogle Scholar
  61. 61.
    Dreyer NA, Loughlin JE, Rothman KJ. Cause-specific mortality in cellular phone users. JAMA 1999;282:1814–1816.PubMedCrossRefGoogle Scholar
  62. 62.
    Muscat JE, Malkin MG, Thompson S, et al. Handheld cellular telephone use and risk of brain cancer. JAMA 2000;284:3001–3007.PubMedCrossRefGoogle Scholar
  63. 63.
    Inskip PD, Tarone RE, Hatch EE, et al. Cellular-telephone use and brain tumors. N Engl J Med 2001;344:79–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Johansen C, Boice JD Jr, McLaughlin JK, Olsen JH. Cellular telephones and cancer—a nationwide cohort study in Denmark. J Natl Cancer Inst 2001;93:203–207.PubMedCrossRefGoogle Scholar
  65. 65.
    Auvinen A, Hietanen M, Luukkonen R, Koskela R-S. Brain tumors and salivary gland cancers among cellular telephone users. Epidemiology 2002;13:356–359.PubMedCrossRefGoogle Scholar
  66. 66.
    Lonn S, Ahlbom A, Hall P, et al. Long-term mobile phone use and brain tumor risk. Am J Epidemiol 2005;161:526–535.PubMedCrossRefGoogle Scholar
  67. 67.
    United Nations Scientific Committee on the effects of atomic radiation (UNSCEAR). Sources and effects of ionizing radiation. UNSCEAR 2000. Report to the General Assembly, with scientific annexes. New York: United Nations, 2000.Google Scholar
  68. 68.
    Berg G, Spallek J, Schuz J, et al. Occupational exposure to radiofrequency/microwave radiation and the risk of brain tumors: Interphone Study Group, Germany. Am J Epidemiol 2006;164:538–548.PubMedCrossRefGoogle Scholar
  69. 69.
    Longstreth WT Jr, Dennis LK, McGuire VM, et al. Epidemiology of intracranial meningioma. Cancer 1993;72:639–648.PubMedCrossRefGoogle Scholar
  70. 70.
    Beller AJ, Feinsod M, Sahar A. The possible relationship between small dose irradiation to the scalp and intracranial meningiomas. Neurochirurgia 1972;15:135–143.PubMedGoogle Scholar
  71. 71.
    Giaquinto S, Massi G, Ricolfi A, Vitali S. On six cases of radiation meningiomas from the same community. Ital J Neurol Sci 1984;5:173–175.PubMedCrossRefGoogle Scholar
  72. 72.
    Harrison MJ, Wolfe DE, Lau TS, et al. Radiation-induced meningiomas: exprience at the Mount Sinai Hospital and review of the literature. J Neurousurg 1991;75:564–574.CrossRefGoogle Scholar
  73. 73.
    Soffer D, Pittaluga S, Feiner M, Beller AJ. Intracranial menin-giomas following low-dose irradiation to the head. J Neurosurg 1983;59:1048–1053.PubMedCrossRefGoogle Scholar
  74. 74.
    Sadetzki S, Flint-Richter P, Ben-Tal T, Nass D. Radiation-induced meningioma: a descriptive study of 253 cases. J Neuro-surg 2002;97:1078–1082.Google Scholar
  75. 75.
    Modan B, Baidatz D, Mart H, et al. Radiation-induced head and neck tumours. Lancet 1974;1:277–279.PubMedCrossRefGoogle Scholar
  76. 76.
    Werner A, Modan B, Davidoff D. Doses to brain, skull, and thyroid, following x-ray therapy for Tinea capitis. Phys Med Biol 1968;13:247–258.PubMedCrossRefGoogle Scholar
  77. 77.
    Ron E, Modan B, Boice JD Jr, et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 1988;319:1033–1039.PubMedGoogle Scholar
  78. 78.
    Sadamori N, Shibata S, Mine M, et al. Incidence of intracranial meningiomas in Nagasaki atomic-bomb survivors. Int J Cancer 1996;67:318–322.PubMedCrossRefGoogle Scholar
  79. 79.
    Shintani T, Hayakawa N, Hoshi M, et al. High incidence of meningioma among Hiroshima atomic bomb survivors. J Radiat Res (Tokyo) 1999;40:49–57.CrossRefGoogle Scholar
  80. 80.
    Preston-Martin S, Henderson BE, Bernstein L. Medical and dental X rays as risk factors for recently diagnosed tumors of the head. Natl Cancer Inst Monogr 1985;69:175–179.PubMedGoogle Scholar
  81. 81.
    Rodvall Y, Ahlbom A, Pershagen G, et al. Dental radiography after age 25 years, amalgam fillings and tumours of the central nervous system. Oral Oncol 1998;34:265–269.PubMedGoogle Scholar
  82. 82.
    Ryan P, Lee MW, North B, McMichael AJ. Amalgam fillings, diagnostic dental X-rays and tumours of the brain and meninges. Eur J Cancer B Oral Oncol 1992;28B:91–95.PubMedCrossRefGoogle Scholar
  83. 83.
    Longstreth WT Jr, Phillips LE, Drangsholt M, et al. Dental X-rays and the risk of intracranial meningioma. A population-based case-control study. Cancer 2004;100:1026–1034.Google Scholar
  84. 84.
    Phillips LE, Frankenfeld CL, Drangsholt M, et al. Intracranial meningioma and ionizing radiation in medical and occupational settings. Neurology 2005;64:350–352.PubMedGoogle Scholar
  85. 85.
    Preston-Martin S, Paganini-Hill A, Henderson BE, et al. Case-control study of intracranial meningiomas in women in Los Angeles County, California. J Natl Cancer Inst 1980;65:67–73.Google Scholar
  86. 86.
    Hu J, Little J, Xu T, et al. Risk factors for meningioma in adults: a case-control study in northeast China. Int J Cancer 1999;83:299–304.PubMedCrossRefGoogle Scholar
  87. 87.
    Ryan P, Lee MW, North B, McMichael AJ. Risk factors for tumours of the brain and meninges: results from the Adelaide adult brain tumor study. Int J Cancer 1992;51:20–27.PubMedCrossRefGoogle Scholar
  88. 88.
    Mills PK, Preston-Martin S, Annegers JF, et al. Risk factors for tumours of the brain and cranial meninges in Seven-Day Adventists. Neuroepidemiology 1989;8:266–275.PubMedCrossRefGoogle Scholar
  89. 89.
    Schlehofer B, Kunze S, Sachsenheimer W, et al. Occupational risk factors for brain tumours: results from a population-based case-control study in Germany. Cancer Causes Control 1990;1:209–215.PubMedCrossRefGoogle Scholar
  90. 90.
    Littorin M, Attewell R, Skerfving S, et al. Mortality and tumour morbidity among Swedish market gardeners and orchardists. Int Arch Occup Environ Health 1993;65:163–169.PubMedCrossRefGoogle Scholar
  91. 91.
    Perry A, Gutmann DH, Reifenberger G. Molecular pathogen-esis of meningiomas. J Neurooncol 2004;70:183–202.PubMedCrossRefGoogle Scholar
  92. 92.
    Ferrante L, Acqui M, Artico M, et al. Familial meningiomas. Report of two cases. J Neurosurg 1987;31:145–151.Google Scholar
  93. 93.
    McDowell JR. Familial meningioma. Neurology 1990;40:312–314.PubMedGoogle Scholar
  94. 94.
    Pulst SM, Rouleau GA, Marineau C, et al. Familial meningi-oma is not allelic to neurofibromatosis 2. Neurology 1993;43:2096–2098.PubMedGoogle Scholar
  95. 95.
    Maxwell M, Shih SD, Galanopoulos T, et al. Familial menin-gioma: analysis of expression of neurofibromatosis 2 protein Merlin. Report of two cases. J Neurosurg 1998;88:562–569.Google Scholar
  96. 96.
    Mark J, Levan G, Mitelman F. Identification by fluorescence of the G chromosome lost in human meningiomas. Hereditas 1972;71:163–168.PubMedGoogle Scholar
  97. 97.
    Zankl H, Zang K. Cytological and cytogenetical studies on brain tumors. 4. Identification of the missing G chromosome in human meningiomas as no. 22 by fluorescence technique. Humangenetik 1972;14:167–169.PubMedCrossRefGoogle Scholar
  98. 98.
    Peyrard M, Fransson I, Xie YG, et al. Characterization of a new member of the human beta-adaptin gene family from chromosome 22q12, a candidate meningioma gene. Human Mol Genet 1994;3:1393–1399.CrossRefGoogle Scholar
  99. 99.
    Lekanne Deprez RH, Riegman PH, Groen NA, et al. Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. Oncogene 1995;10:1521–1528.Google Scholar
  100. 100.
    Schmitz U, Mueller W, Weber M, et al. INI1 mutations in meningiomas at a potential hotspot in exon 9. Br J Cancer 2001;84:199–201.PubMedCrossRefGoogle Scholar
  101. 101.
    Trofatter JA, MacCollin MM, Rutter JL, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993;72:791–800.PubMedCrossRefGoogle Scholar
  102. 102.
    Rouleau GA, Merel P, Lutchman M, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 1993;363:515–521.PubMedCrossRefGoogle Scholar
  103. 103.
    Gusella JF, Ramesh V, MacCollin M, Jacoby LB. Merlin: the neurofibromatosis 2 tumor suppressor. Biochim Biophys Acta 1999;1423:M29–36.PubMedGoogle Scholar
  104. 104.
    Ruttledge MH, Sarrazin J, Rangaratnam S, et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 1994;6:180–184.PubMedCrossRefGoogle Scholar
  105. 105.
    Harada T, Irving RM, Xuereb JH, et al. Molecular genetic investigation of the neurofibromatosis type 2 tumor suppressor gene in sporadic meningioma. J Neurosurg 1996;84:847–851.PubMedCrossRefGoogle Scholar
  106. 106.
    Papi L, De Vitis LR, Vitelli F, et al. Somatic mutations in the neurofibromatosis type 2 gene in sporadic meningiomas. Hum Genet 1995;95:347–351.PubMedCrossRefGoogle Scholar
  107. 107.
    Wellenreuther R, Kraus J, Lenartz D, et al. Analysis of the neu-rofibromatosis 2 gene reveals molecular variants of meningi-oma. Am J Pathol 1995;146:827–832.PubMedGoogle Scholar
  108. 108.
    Gutmann DH, Donahoe J, Perry A, et al. Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet 2000;9:1495–1500.PubMedCrossRefGoogle Scholar
  109. 109.
    Robb VA, Li W, Gascard P, et al. Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogen-esis. Neurobiol Dis 2003;13:191–202.PubMedCrossRefGoogle Scholar
  110. 110.
    Surace EI, Lusis E, Murakami Y, et al. Loss of tumor suppressor in lung cancer–1 (TSLC-1) expression in meni-ngioma correlates with increased malignancy grade and reduced patient survival. J Neuropathol Exp Neurol 2004;63:1015–1027.PubMedGoogle Scholar
  111. 111.
    Buschges R, Ichimura K, Weber RG, et al. Allelic gain and amplification on the long arm of chromosome 17 in anaplastic meningiomas. Brain Pathol 2002;12:145–153.PubMedCrossRefGoogle Scholar
  112. 112.
    Cai DX, Banerjee R, Scheithauer BW, et al. Chromosome 1 p and 14 q FISH analysis in clinicopathologic subsets of menin-gioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 2001;60:628–636.PubMedGoogle Scholar
  113. 113.
    Cai DX, James CD, Scheithauer BW, et al. PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 2001;115:213–218.PubMedCrossRefGoogle Scholar
  114. 114.
    Lamszus K, Kluwe L, Matschke J, et al. Allelic losses at 1 p, 9 q, 10 q, 14 q and 22 q in the progression of aggressive menin-giomas and undifferentiated meningeal sarcomas. Cancer Genet Cytogenet 1999;110:103–110.PubMedCrossRefGoogle Scholar
  115. 115.
    Ozaki S, Nishizaki T, Ito H, Sasaki K. Comparative genomic hybridization analysis of genetic alterations associated with malignant progression of meningioma. J Neuro-Oncol 1999;41:167–174.CrossRefGoogle Scholar
  116. 116.
    Weber RG, Bostrom J, Wolter M, et al. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 1997;94:14719–14724.PubMedCrossRefGoogle Scholar
  117. 117.
    Watson MA, Gutmann DH, Peterson K, et al. Molecular characterization of human meningiomas by gene expression profiling using high-density oligonucleotide microarrays. Am J Pathol 2002;161:665–672.PubMedGoogle Scholar
  118. 118.
    Amirjamshidi A, Mehrazin M, Abbassioun K. Meningiomas of the central nervous system occurring below the age of 17: report of 24 cases not associated with neurofibromatosis and review of literature. Childs Nerv Syst 2000;16:406–416.PubMedCrossRefGoogle Scholar
  119. 119.
    Perry A, Giannini C, Raghavan R, et al. Aggressive phenotypic and genotypic features in pediatric and NF2-associated menin-giomas: a clinicopathologic study of 53 cases. J Neuropathol Exp Neurol 2001;60:994–1003.PubMedGoogle Scholar
  120. 120.
    Shoshan Y, Chernova O, Juen SS, et al. Radiation-induced meningioma: a distinct molecular genetic pattern? J Neuro-pathol Exp Neurol 2000;59:614–620.Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Michael J. Link
    • 1
  • Arie Perry
    • 2
  1. 1.Department of Neurological SurgeryMayo ClinicRochesterUSA
  2. 2.Department of NeuropathologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations