Receptor Signaling Pathways in Heart Failure: Transgenic Mouse Models

  • Juhsien Chen
  • Howard A. Rockman


With increasing prevalence and high mortality, heart failure (HF) emerges as a major health problem. The heart often undergoes myocardial hypertrophy in response to increased load demand, and acute or chronic HF occurs when the heart acutely or gradually decompensates in the setting of new pathologic stresses. In addition to hypertrophy, the heart also undergoes other maladaptive modifications in response to pathogenic stresses that include altered contractility, cardiomyocyte survival, and transcriptional gene expressions. These changes are mediated, in part, by plasma membrane receptors that transduce extracellular signals to multiple complex intracellular signaling pathways that regulate cardiac gene expression. These various signaling pathways implicated in the pathophysiology of HF have been extensively studied, and genetically modified mouse models have been crucial in elucidating these pathways. This chapter discusses the signaling mechanisms underlying cardiac hypertrophy and failure and the transgenic mouse models that have been used to study these signaling pathways, with emphasis on G-protein-coupled receptors, growth factor receptors, and the convergence of extracellular signaling pathways in intracellular and transcriptional regulation of hypertrophy and HF.


Cardiac Hypertrophy Pressure Overload Receptor Signaling Pathway Hypertrophic Response Chronic Pressure Overload 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature 2002;415(6868):206–12.PubMedGoogle Scholar
  2. 2.
    Lefkowitz RJ. G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 1998;273(30):18677–80.PubMedGoogle Scholar
  3. 3.
    Barki-Harrington L, Perrino C, Rockman HA. Network integration of the adrenergic system in cardiac hypertrophy. Cardiovasc Res 2004;63(3):391–402.PubMedGoogle Scholar
  4. 4.
    Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 2000;87(12):1095–102.PubMedGoogle Scholar
  5. 5.
    Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 2000;101(4):365–76.PubMedGoogle Scholar
  6. 6.
    Tada M, Toyofuku T. SR Ca(2+)-ATPase/phospholamban in cardiomyocyte function. J Card Fail 1996;2(4 suppl):S77–85.PubMedGoogle Scholar
  7. 7.
    Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 2004;63(3):467–75.PubMedGoogle Scholar
  8. 8.
    Kurose H. Galpha12 and Galpha13 as key regulatory mediator in signal transduction. Life Sci 2003;74(2–3):155–61.PubMedGoogle Scholar
  9. 9.
    Pitcher JA, Freedman NJ, Lefkowitz RJ. G proteincoupled receptor kinases. Annu Rev Biochem 1998;67:653–92.PubMedGoogle Scholar
  10. 10.
    Claing A, Laporte SA, Caron MG, Lefkowitz RJ. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 2002;66(2):61–79.PubMedGoogle Scholar
  11. 11.
    Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 2002;115 (pt 3):455–65.PubMedGoogle Scholar
  12. 12.
    McDonald PH, Chow CW, Miller WE, et al. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000;290(5496):1574–7.PubMedGoogle Scholar
  13. 13.
    Luttrell LM, Roudabush FL, Choy EW, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 2001;98(5):2449–54.PubMedGoogle Scholar
  14. 14.
    Sibley DR, Strasser RH, Benovic JL, Daniel K, Lefkowitz RJ. Phosphorylation/dephosphorylation of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci USA 1986;83(24):9408–12.PubMedGoogle Scholar
  15. 15.
    Yu SS, Lefkowitz RJ, Hausdorff WP. Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J Biol Chem 1993;268(1):337–41.PubMedGoogle Scholar
  16. 16.
    Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 1999;51(4):651–90.PubMedGoogle Scholar
  17. 17.
    Gauthier C, Leblais V, Kobzik L, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 1998;102(7):1377–84.PubMedGoogle Scholar
  18. 18.
    Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional beta3-adrenoceptor in the human heart. J Clin Invest 1996;98(2):556–62.PubMedGoogle Scholar
  19. 19.
    Bristow MR. Why does the myocardium fail? Insights from basic science. Lancet 1998;352(suppl 1):SI8–14.PubMedGoogle Scholar
  20. 20.
    Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982;307(4):205–11.PubMedGoogle Scholar
  21. 21.
    Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R. Beta 1-and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 1989;35(3):295–303.PubMedGoogle Scholar
  22. 22.
    Bristow MR, Minobe WA, Raynolds MV, et al. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest 1993;92(6):2737–45.PubMedGoogle Scholar
  23. 23.
    Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 1993;87(2):454–63.PubMedGoogle Scholar
  24. 24.
    Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 2001;98(4):1607–12.PubMedGoogle Scholar
  25. 25.
    Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390(6655):88–91.PubMedGoogle Scholar
  26. 26.
    Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999;96(12):7059–64.PubMedGoogle Scholar
  27. 27.
    Rohrer DK, Desai KH, Jasper JR, et al. Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci USA 1996;93(14):7375–80.PubMedGoogle Scholar
  28. 28.
    Liggett SB, Tepe NM, Lorenz JN, et al. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 2000;101(14):1707–14.PubMedGoogle Scholar
  29. 29.
    Milano CA, Allen LF, Rockman HA, et al. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 1994;264(5158):582–6.PubMedGoogle Scholar
  30. 30.
    Xiao RP, Avdonin P, Zhou YY, et al. Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999;84(1):43–52.PubMedGoogle Scholar
  31. 31.
    Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem 1999;274(24):16694–700.PubMedGoogle Scholar
  32. 32.
    Dorn GW, 2nd, Tepe NM, Lorenz JN, Koch WJ, Liggett SB. Low-and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc Natl Acad Sci USA 1999;96(11):6400–5.PubMedGoogle Scholar
  33. 33.
    Exton JH. Mechanisms involved in alpha-adrenergic phenomena. Am J Physiol 1985;248(6 pt 1):E633–47.PubMedGoogle Scholar
  34. 34.
    Lin F, Owens WA, Chen S, et al. Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 2001;89(4):343–50.PubMedGoogle Scholar
  35. 35.
    Akhter SA, Milano CA, Shotwell KF, et al. Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J Biol Chem 1997;272(34):21253–9.PubMedGoogle Scholar
  36. 36.
    Milano CA, Dolber PC, Rockman HA, et al. Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 1994;91(21):10109–13.PubMedGoogle Scholar
  37. 37.
    Vecchione C, Fratta L, Rizzoni D, et al. Cardiovascular influences of alpha1b-adrenergic receptor defect in mice. Circulation 2002;105(14):1700–7.PubMedGoogle Scholar
  38. 38.
    Cavalli A, Lattion AL, Hummler E, et al. Decreased blood pressure response in mice deficient of the alpha1b-adrenergic receptor. Proc Natl Acad Sci USA 1997;94(21):11589–94.PubMedGoogle Scholar
  39. 39.
    Gaudin C, Ishikawa Y, Wight DC, et al. Overexpression of Gs alpha protein in the hearts of transgenic mice. J Clin Invest 1995;95(4):1676–83.PubMedGoogle Scholar
  40. 40.
    Iwase M, Bishop SP, Uechi M, et al. Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ Res 1996;78(4):517–24.PubMedGoogle Scholar
  41. 41.
    D’Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 1997;94(15):8121–6.PubMedGoogle Scholar
  42. 42.
    Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ. Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurindependent and independent pathways. Proc Natl Acad Sci USA 1998;95(23):13893–8.PubMedGoogle Scholar
  43. 43.
    Sakata Y, Hoit BD, Liggett SB, Walsh RA, Dorn GW, 2nd. Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation 1998;97(15):1488–95.PubMedGoogle Scholar
  44. 44.
    Adams JW, Sakata Y, Davis MG, et al. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 1998;95(17):10140–5.PubMedGoogle Scholar
  45. 45.
    Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998;280(5363):574–7.PubMedGoogle Scholar
  46. 46.
    Esposito G, Rapacciuolo A, Naga Prasad SV, et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 2002;105(1):85–92.PubMedGoogle Scholar
  47. 47.
    Redfern CH, Degtyarev MY, Kwa AT, et al. Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc Natl Acad Sci USA 2000;97(9):4826–31.PubMedGoogle Scholar
  48. 48.
    Baker AJ, Redfern CH, Harwood MD, Simpson PC, Conklin BR. Abnormal contraction caused by expression of G(i)-coupled receptor in transgenic model of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2001;280(4):H1653–9.PubMedGoogle Scholar
  49. 49.
    Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 1993;268(32):23735–8.PubMedGoogle Scholar
  50. 50.
    Choi DJ, Koch WJ, Hunter JJ, Rockman HA. Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase. J Biol Chem 1997;272(27):17223–9.PubMedGoogle Scholar
  51. 51.
    Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 1995;268(5215):1350–3.PubMedGoogle Scholar
  52. 52.
    Korzick DH, Xiao RP, Ziman BD, Koch WJ, Lefkowitz RJ, Lakatta EG. Transgenic manipulation of beta-adrenergic receptor kinase modifies cardiac myocyte contraction to norepinephrine. Am J Physiol 1997;272(1 pt 2):H590–6.PubMedGoogle Scholar
  53. 53.
    Jaber M, Koch WJ, Rockman H, et al. Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA 1996;93(23):12974–9.PubMedGoogle Scholar
  54. 54.
    Rockman HA, Choi DJ, Akhter SA, et al. Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem 1998;273(29):18180–4.PubMedGoogle Scholar
  55. 55.
    Esposito G, Santana LF, Dilly K, et al. Cellular and functional defects in a mouse model of heart failure. Am J Physiol Heart Circ Physiol 2000;279(6):H3101–12.PubMedGoogle Scholar
  56. 56.
    Rockman HA, Chien KR, Choi DJ, et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci USA 1998;95(12):7000–5.PubMedGoogle Scholar
  57. 57.
    Harding VB, Jones LR, Lefkowitz RJ, Koch WJ, Rockman HA. Cardiac beta ARK1 inhibition prolongs survival and augments beta blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci USA 2001;98(10):5809–14.PubMedGoogle Scholar
  58. 58.
    Freeman K, Colon-Rivera C, Olsson MC, et al. Progression from hypertrophic to dilated cardiomyopathy in mice that express a mutant myosin transgene. Am J Physiol Heart Circ Physiol 2001;280(1):H151–9.PubMedGoogle Scholar
  59. 59.
    The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353(9146):9–13.Google Scholar
  60. 60.
    Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERITHF). Lancet 1999;353(9169):2001–7.Google Scholar
  61. 61.
    Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 1996;334(21):1349–55.PubMedGoogle Scholar
  62. 62.
    Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;344(22):1651–8.PubMedGoogle Scholar
  63. 63.
    Rockman HA, Choi DJ, Rahman NU, Akhter SA, Lefkowitz RJ, Koch WJ. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc Natl Acad Sci USA 1996;93(18):9954–9.PubMedGoogle Scholar
  64. 64.
    Iaccarino G, Rockman HA, Shotwell KF, Tomhave ED, Koch WJ. Myocardial overexpression of GRK3 in transgenic mice: evidence for in vivo selectivity of GRKs. Am J Physiol 1998;275(4 Pt 2):H1298–306.PubMedGoogle Scholar
  65. 65.
    Wollert KC, Drexler H. The renin-angiotensin system and experimental heart failure. Cardiovasc Res 1999;43(4):838–49.PubMedGoogle Scholar
  66. 66.
    Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 2000;52(4):639–72.PubMedGoogle Scholar
  67. 67.
    Burson JM, Aguilera G, Gross KW, Sigmund CD. Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Physiol 1994;267(2 Pt 1):E260–7.PubMedGoogle Scholar
  68. 68.
    Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995;95(1):46–54.PubMedGoogle Scholar
  69. 69.
    Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 1990;86(6):1913–20.PubMedGoogle Scholar
  70. 70.
    Schunkert H, Jackson B, Tang SS, et al. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation 1993;87(4):1328–39.PubMedGoogle Scholar
  71. 71.
    Studer R, Reinecke H, Muller B, Holtz J, Just H, Drexler H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest 1994;94(1):301–10.PubMedGoogle Scholar
  72. 72.
    Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K, Iwao H. Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension 1995;25(6):1252–9.PubMedGoogle Scholar
  73. 73.
    Lijnen P, Petrov V. Antagonism of the reninangiotensin-aldosterone system and collagen metabolism in cardiac fibroblasts. Methods Find Exp Clin Pharmacol 1999;21(3):215–27.PubMedGoogle Scholar
  74. 74.
    Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001;345(23):1667–75.PubMedGoogle Scholar
  75. 75.
    Lindholm LH, Ibsen H, Dahlof B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359(9311):1004–10.PubMedGoogle Scholar
  76. 76.
    Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial—the Losartan Heart Failure Survival Study ELITE II. Lancet 2000;355(9215):1582–7.PubMedGoogle Scholar
  77. 77.
    Rockman HA, Wachhorst SP, Mao L, Ross J, Jr. ANG II receptor blockade prevents ventricular hypertrophy and ANF gene expression with pressure overload in mice. Am J Physiol 1994;266(6 pt 2):H2468–75.PubMedGoogle Scholar
  78. 78.
    Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. Embo J 1993;12(4):1681–92.PubMedGoogle Scholar
  79. 79.
    Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA 2000;97(2):931–6.PubMedGoogle Scholar
  80. 80.
    Harada K, Komuro I, Shiojima I, et al. Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 1998;97(19):1952–9.PubMedGoogle Scholar
  81. 81.
    Harada K, Komuro I, Zou Y, et al. Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type 1a knockout mice. Circ Res 1998;82(7):779–85.PubMedGoogle Scholar
  82. 82.
    Zou Y, Akazawa H, Qin Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 2004;6(6):499–506.PubMedGoogle Scholar
  83. 83.
    Lorell BH. Role of angiotensin AT1, and AT2 receptors in cardiac hypertrophy and disease. Am J Cardiol 1999;83(12A):48H–52H.PubMedGoogle Scholar
  84. 84.
    Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 2001;104(3):346–51.PubMedGoogle Scholar
  85. 85.
    Masaki H, Kurihara T, Yamaki A, et al. Cardiacspecific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J Clin Invest 1998;101(3):527–35.PubMedGoogle Scholar
  86. 86.
    Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T. Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 2000;106(3):R25–9.PubMedGoogle Scholar
  87. 87.
    Akishita M, Iwai M, Wu L, et al. Inhibitory effect of angiotensin II type 2 receptor on coronary arterial remodeling after aortic banding in mice. Circulation 2000;102(14):1684–9.PubMedGoogle Scholar
  88. 88.
    Kurisu S, Ozono R, Oshima T, et al. Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis. Hypertension 2003;41(1):99–107.PubMedGoogle Scholar
  89. 89.
    Metcalfe BL, Huentelman MJ, Parilak LD, et al. Prevention of cardiac hypertrophy by angiotensin II type-2 receptor gene transfer. Hypertension 2004;43(6):1233–8.PubMedGoogle Scholar
  90. 90.
    Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 1998;83(12):1182–91.PubMedGoogle Scholar
  91. 91.
    Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332(6163):411–5.PubMedGoogle Scholar
  92. 92.
    Yang LL, Gros R, Kabir MG, et al. Conditional cardiac overexpression of endothelin-1 induces inflammation and dilated cardiomyopathy in mice. Circulation 2004;109(2):255–61.PubMedGoogle Scholar
  93. 93.
    Sakai S, Miyauchi T, Sakurai T, et al. Endogenous endothelin-1 participates in the maintenance of cardiac function in rats with congestive heart failure. Marked increase in endothelin-1 production in the failing heart. Circulation 1996;93(6):1214–22.PubMedGoogle Scholar
  94. 94.
    Yamazaki T, Komuro I, Kudoh S, et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 1996;271(6):3221–8.PubMedGoogle Scholar
  95. 95.
    Stewart DJ, Cernacek P, Costello KB, Rouleau JL. Elevated endothelin-1 in heart failure and loss of normal response to postural change. Circulation 1992;85(2):510–7.PubMedGoogle Scholar
  96. 96.
    Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 1996;384(6607):353–5.PubMedGoogle Scholar
  97. 97.
    Waltenberger J. Modulation of growth factor action: implications for the treatment of cardiovascular diseases. Circulation 1997;96(11):4083–94.PubMedGoogle Scholar
  98. 98.
    Schlessinger J, Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron 1992;9(3):383–91.PubMedGoogle Scholar
  99. 99.
    Schultz JE, Witt SA, Nieman ML, et al. Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest 1999;104(6):709–19.PubMedGoogle Scholar
  100. 100.
    Bogoyevitch MA, Glennon PE, Andersson MB, et al. Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem 1994;269(2):1110–9.PubMedGoogle Scholar
  101. 101.
    Li RK, Li G, Mickle DA, et al. Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 1997;96(3):874–81.PubMedGoogle Scholar
  102. 102.
    Serneri GG, Modesti PA, Boddi M, et al. Cardiac growth factors in human hypertrophy. Relations with myocardial contractility and wall stress. Circ Res 1999;85(1):57–67.PubMedGoogle Scholar
  103. 103.
    Song H FA, Conte JV, and Chi-Ming W. Presentation and localization of transforming growth factor beta isoforms and its receptor subtypes in human myocardium in the absence and presence of heart failure. Circulation 1997;197(Suppl I):I-362.Google Scholar
  104. 104.
    Takahashi N, Calderone A, Izzo NJ Jr, Maki TM, Marsh JD, Colucci WS. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. J Clin Invest 1994;94(4):1470–6.PubMedGoogle Scholar
  105. 105.
    Villarreal FJ, Dillmann WH. Cardiac hypertrophyinduced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen. Am J Physiol 1992;262(6 Pt 2):H1861–6.PubMedGoogle Scholar
  106. 106.
    Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990;85(2):507–14PubMedGoogle Scholar
  107. 107.
    Rosenkranz S, Flesch M, Amann K, et al. Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol 2002;283(3):H1253–62.PubMedGoogle Scholar
  108. 108.
    Ponten A, Li X, Thoren P, et al. Transgenic overexpression of platelet-derived growth factor-C in the mouse heart induces cardiac fibrosis, hypertrophy, and dilated cardiomyopathy. Am J Pathol 2003;163(2):673–82.PubMedGoogle Scholar
  109. 109.
    Abraham D, Hofbauer R, Schafer R, et al. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ Res 2000;87(8):644–7.PubMedGoogle Scholar
  110. 110.
    Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 2005;111(16):2073–85.PubMedGoogle Scholar
  111. 111.
    Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 2005;115(8):2108–18.PubMedGoogle Scholar
  112. 112.
    Giordano FJ, Gerber HP, Williams SP, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA 2001;98(10):5780–5.PubMedGoogle Scholar
  113. 113.
    Hilfiker-Kleiner D, Limbourg A, Drexler H. STAT3-mediated activation of myocardial capillary growth. Trends Cardiovasc Med 2005;15(4):152–7.PubMedGoogle Scholar
  114. 114.
    Yamauchi-Takihara K, Kishimoto T. A novel role for STAT3 in cardiac remodeling. Trends Cardiovasc Med 2000;10(7):298–303.PubMedGoogle Scholar
  115. 115.
    Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994;76(2):253–62.PubMedGoogle Scholar
  116. 116.
    Hirano T, Nakajima, Koichi, Hibi, Masahiko. Signaling mechanisms through gp130: a model of the cytokine system. Cytokine & Growth Factor Reviews 1997;8(4):241–52.Google Scholar
  117. 117.
    Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999;97(2):189–98.PubMedGoogle Scholar
  118. 118.
    Hirota H, Yoshida K, Kishimoto T, Taga T. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 1995;92(11):4862–6.PubMedGoogle Scholar
  119. 119.
    Uozumi H, Hiroi Y, Zou Y, et al. gp130 plays a critical role in pressure overload-induced cardiac hypertrophy. J Biol Chem 2001;276(25):23115–9.PubMedGoogle Scholar
  120. 120.
    Pennica D, King KL, Shaw KJ, et al. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 1995;92(4):1142–6.PubMedGoogle Scholar
  121. 121.
    Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogenactivated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 1997;272(9):5783–91.PubMedGoogle Scholar
  122. 122.
    Takimoto Y, Aoyama T, Iwanaga Y, et al. Increased expression of cardiotrophin-1 during ventricular remodeling in hypertensive rats. Am J Physiol Heart Circ Physiol 2002;282(3):H896–901.PubMedGoogle Scholar
  123. 123.
    Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM. Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 1996;347(9009):1151–5.PubMedGoogle Scholar
  124. 124.
    Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323(4):236–41.PubMedGoogle Scholar
  125. 125.
    Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996;27(5):1201–6.PubMedGoogle Scholar
  126. 126.
    Kubota T, Miyagishima M, Alvarez RJ, et al. Expression of proinflammatory cytokines in the failing human heart: comparison of recent-onset and end-stage congestive heart failure. J Heart Lung Transplant 2000;19(9):819–24.PubMedGoogle Scholar
  127. 127.
    Sack MN, Smith RM, Opie LH. Tumor necrosis factor in myocardial hypertrophy and ischaemiaan anti-apoptotic perspective. Cardiovasc Res 2000;45(3):688–95.PubMedGoogle Scholar
  128. 128.
    Kubota T, McTiernan CF, Frye CS, Demetris AJ, Feldman AM. Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. J Card Fail 1997;3(2):117–24.PubMedGoogle Scholar
  129. 129.
    Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiacspecific overexpression of tumor necrosis factor-alpha. Circ Res 1997;81(4):627–35.PubMedGoogle Scholar
  130. 130.
    Li X, Moody MR, Engel D, et al. Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 2000;102(14):1690–6.PubMedGoogle Scholar
  131. 131.
    Sivasubramanian N, Coker ML, Kurrelmeyer KM, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 2001;104(7):826–31.PubMedGoogle Scholar
  132. 132.
    Seger R, Krebs EG. The MAPK signaling cascade. Faseb J 1995;9(9):726–35.PubMedGoogle Scholar
  133. 133.
    Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993;268(20):14553–6.PubMedGoogle Scholar
  134. 134.
    Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999;11(2):211–8.PubMedGoogle Scholar
  135. 135.
    Sugden PH, Clerk A. Cellular mechanisms of cardiac hypertrophy. J Mol Med 1998;76(11):725–46.PubMedGoogle Scholar
  136. 136.
    Boulton TG, Nye SH, Robbins DJ, et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991;65(4):663–75.PubMedGoogle Scholar
  137. 137.
    Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 2002;91(9):776–81.PubMedGoogle Scholar
  138. 138.
    Esposito G, Prasad SV, Rapacciuolo A, Mao L, Koch WJ, Rockman HA. Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 2001;103(10):1453–8.PubMedGoogle Scholar
  139. 139.
    Rapacciuolo A, Esposito G, Caron K, Mao L, Thomas SA, Rockman HA. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J Am Coll Cardiol 2001;38(3):876–82.PubMedGoogle Scholar
  140. 140.
    Bueno OF, De Windt LJ, Tymitz KM, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. Embo J 2000;19(23):6341–50.PubMedGoogle Scholar
  141. 141.
    Wang LX, Ideishi M, Yahiro E, Urata H, Arakawa K, Saku K. Mechanism of the cardioprotective effect of inhibition of the renin-angiotensin system on ischemia/reperfusion-induced myocardial injury. Hypertens Res 2001;24(2):179–87.PubMedGoogle Scholar
  142. 142.
    Liang Q, Wiese RJ, Bueno OF, Dai YS, Markham BE, Molkentin JD. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1-and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol 2001;21(21):7460–9.PubMedGoogle Scholar
  143. 143.
    Molkentin JD. The zinc finger-containing transcription factors GATA-4,-5, and-6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 2000;275(50):38949–52.PubMedGoogle Scholar
  144. 144.
    Liang Q, Molkentin JD. Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 2003;35(12):1385–94.PubMedGoogle Scholar
  145. 145.
    Barr RK, Bogoyevitch MA. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int J Biochem Cell Biol 2001;33(11):1047–63.PubMedGoogle Scholar
  146. 146.
    Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal 2000;12(1):1–13.PubMedGoogle Scholar
  147. 147.
    Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem 1997;272(48):30122–8.PubMedGoogle Scholar
  148. 148.
    Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000;103(2):239–52.PubMedGoogle Scholar
  149. 149.
    Petrich BG, Wang Y. Stress-activated MAP kinases in cardiac remodeling and heart failure; new insights from transgenic studies. Trends Cardiovasc Med 2004;14(2):50–5.PubMedGoogle Scholar
  150. 150.
    Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998;273(4):2161–8.PubMedGoogle Scholar
  151. 151.
    Liao P, Georgakopoulos D, Kovacs A, et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci USA 2001;98(21):12283–8.PubMedGoogle Scholar
  152. 152.
    Liao P, Wang SQ, Wang S, et al. p38 Mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circ Res 2002;90(2):190–6.PubMedGoogle Scholar
  153. 153.
    Braz JC, Bueno OF, Liang Q, et al. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J Clin Invest 2003;111(10):1475–86.PubMedGoogle Scholar
  154. 154.
    Petrich BG, Molkentin JD, Wang Y. Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. Faseb J 2003;17(6):749–51.PubMedGoogle Scholar
  155. 155.
    Sadoshima J, Montagne O, Wang Q, et al. The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 2002;110(2):271–9.PubMedGoogle Scholar
  156. 156.
    Liang Q, Bueno OF, Wilkins BJ, Kuan CY, Xia Y, Molkentin JD. c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. Embo J 2003;22(19):5079–89.PubMedGoogle Scholar
  157. 157.
    Zhang S, Weinheimer C, Courtois M, et al. The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J Clin Invest 2003;111(6):833–41.PubMedGoogle Scholar
  158. 158.
    Petrich BG, Eloff BC, Lerner DL, et al. Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. J Biol Chem 2004;279(15):15330–8.PubMedGoogle Scholar
  159. 159.
    Haq S, Choukroun G, Lim H, et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 2001;103(5):670–7.PubMedGoogle Scholar
  160. 160.
    Cook SA, Sugden PH, Clerk A. Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 1999;31(8):1429–34.PubMedGoogle Scholar
  161. 161.
    Dorn GW, 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005;115(3):527–37.PubMedGoogle Scholar
  162. 162.
    Igaz P, Toth S, Falus A. Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice. Inflamm Res 2001;50(9):435–41.PubMedGoogle Scholar
  163. 163.
    Imada K, Leonard WJ. The Jak-STAT pathway. Mol Immunol 2000;37(1–2):1–11.PubMedGoogle Scholar
  164. 164.
    Pan J, Fukuda K, Kodama H, et al. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 1997;81(4):611–7.PubMedGoogle Scholar
  165. 165.
    Kunisada K, Negoro S, Tone E, et al. Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci USA 2000;97(1):315–9.PubMedGoogle Scholar
  166. 166.
    Negoro S, Kunisada K, Tone E, et al. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 2000;47(4):797–805.PubMedGoogle Scholar
  167. 167.
    Osugi T, Oshima Y, Fujio Y, et al. Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart. J Biol Chem 2002;277(8):6676–81.PubMedGoogle Scholar
  168. 168.
    Hilfiker-Kleiner D, Hilfiker A, Fuchs M, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 2004;95(2):187–95.PubMedGoogle Scholar
  169. 169.
    Balke CW, Shorofsky SR. Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 1998;37(2):290–9.PubMedGoogle Scholar
  170. 170.
    Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997;15:707–47.PubMedGoogle Scholar
  171. 171.
    Molkentin JD, Dorn IG 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 2001;63:391–426.PubMedGoogle Scholar
  172. 172.
    Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 1998;273(22):13367–70.PubMedGoogle Scholar
  173. 173.
    Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93(2):215–28.PubMedGoogle Scholar
  174. 174.
    Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 2004;322(4):1178–91.PubMedGoogle Scholar
  175. 175.
    Sussman MA, Lim HW, Gude N, et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 1998;281(5383):1690–3.PubMedGoogle Scholar
  176. 176.
    Wilkins BJ, Dai YS, Bueno OF, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 2004;94(1):110–8.PubMedGoogle Scholar
  177. 177.
    Wehrens XH, Lehnart SE, Huang F, et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 2003;113(7):829–40.PubMedGoogle Scholar
  178. 178.
    Lehnart SE, Wehrens XH, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 2005;123(1):25–35.PubMedGoogle Scholar
  179. 179.
    Prasad SV, Perrino C, Rockman HA. Role of phosphoinositide 3-kinase in cardiac function and heart failure. Trends Cardiovasc Med 2003;13(5):206–12.Google Scholar
  180. 180.
    Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001;114 (Pt 16):2903–10.PubMedGoogle Scholar
  181. 181.
    Martin TF. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 1998;14:231–64.PubMedGoogle Scholar
  182. 182.
    Crackower MA, Oudit GY, Kozieradzki I, et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 2002;110(6):737–49.PubMedGoogle Scholar
  183. 183.
    Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem 2000;275(7):4693–8.PubMedGoogle Scholar
  184. 184.
    Shioi T, Kang PM, Douglas PS, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. Embo J 2000;19(11):2537–48.PubMedGoogle Scholar
  185. 185.
    Condorelli G, Drusco A, Stassi G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA 2002;99(19):12333–8.PubMedGoogle Scholar
  186. 186.
    Shioi T, McMullen JR, Kang PM, et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 2002;22(8):2799–809.PubMedGoogle Scholar
  187. 187.
    Jo SH, Leblais V, Wang PH, Crow MT, Xiao RP. Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent G(s) signaling during beta2-adrenergic stimulation. Circ Res 2002;91(1):46–53.PubMedGoogle Scholar
  188. 188.
    Naga Prasad SV, Barak LS, Rapacciuolo A, Caron MG, Rockman HA. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by beta-adrenergic receptor kinase 1. A role in receptor sequestration. J Biol Chem 2001;276(22):18953–9.PubMedGoogle Scholar
  189. 189.
    Naga Prasad SV, Laporte SA, Chamberlain D, Caron MG, Barak L, Rockman HA. Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol 2002;158(3):563–75.PubMedGoogle Scholar
  190. 190.
    Nienaber JJ, Tachibana H, Naga Prasad SV, et al. Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. J Clin Invest 2003;112(7):1067–79.PubMedGoogle Scholar
  191. 191.
    Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA. Protein kinase activity of phosphoinositide 3-kinase regulates beta-adrenergic receptor endocytosis. Nat Cell Biol 2005;7(8):785–96.PubMedGoogle Scholar
  192. 192.
    Perrino C, Naga Prasad SV, Schroder JN, Hata JA, Milano C, Rockman HA. Restoration of beta-adrenergic receptor signaling and contractile function in heart failure by disruption of the betaARK1/phosphoinositide 3-kinase complex. Circulation 2005;111(20):2579–87.PubMedGoogle Scholar
  193. 193.
    Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 2002;99(2):907–12.PubMedGoogle Scholar
  194. 194.
    McMullen JR, Sherwood MC, Tarnavski O, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 2004;109(24):3050–5.PubMedGoogle Scholar
  195. 195.
    McMullen JR, Shioi T, Zhang L, et al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA 2003;100(21):12355–60.PubMedGoogle Scholar
  196. 196.
    Patrucco E, Notte A, Barberis L, et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and-independent effects. Cell 2004;118(3):375–87.PubMedGoogle Scholar
  197. 197.
    McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005;115(3):538–46.PubMedGoogle Scholar
  198. 198.
    Bush E, Fielitz J, Melvin L, et al. A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway. Proc Natl Acad Sci USA 2004;101(9):2870–5.PubMedGoogle Scholar
  199. 199.
    Vega RB, Harrison BC, Meadows E, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 2004;24(19):8374–85.PubMedGoogle Scholar
  200. 200.
    Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002;110(4):479–88.PubMedGoogle Scholar
  201. 201.
    McKinsey TA, Zhang CL, Olson EN. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 2002;27(1):40–7.PubMedGoogle Scholar
  202. 202.
    Harrison BC, Roberts CR, Hood DB, et al. The CRM1 nuclear export receptor controls pathological cardiac gene expression. Mol Cell Biol 2004;24(24):10636–49.PubMedGoogle Scholar
  203. 203.
    Han A, Pan F, Stroud JC, Youn HD, Liu JO, Chen L. Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2. Nature 2003;422(6933):730–4.PubMedGoogle Scholar
  204. 204.
    Youn HD, Grozinger CM, Liu JO. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J Biol Chem 2000;275(29):22563–7.PubMedGoogle Scholar
  205. 205.
    McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000;408(6808):106–11.PubMedGoogle Scholar
  206. 206.
    Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 2004;24(19):8467–76.PubMedGoogle Scholar
  207. 207.
    Youn HD, Chatila TA, Liu JO. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. Embo J 2000;19(16):4323–31.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Juhsien Chen
    • 1
  • Howard A. Rockman
    • 1
  1. 1.Department of Cardiovascular MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations