In silico Evolutionary Developmental Neurobiology and the Origin of Natural Language

  • Eörs Szathmáry
  • Zoltán Szathmáry
  • Péter Ittzés
  • GeroŐ Orbaán
  • István Zachár
  • Ferenc Huszár
  • Anna Fedor
  • Máté Varga
  • Szabolcs Számadó


It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding–-just as brains do.


Neuronal Network Specific Language Impairment Human Language Fitness Landscape Coordination Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Airey, D.C., Robbins, A.I., Enzinger, K.M., Wu, F., Collins, C.E.: Variation in the cortical map of C57BL/6 J and DBA/2 J inbred mice predicts strain identity. BMC Neurosci. 6 (2005) 18CrossRefGoogle Scholar
  2. Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collective behavior. Artif. Life 9 (2003) 255–267CrossRefGoogle Scholar
  3. Bickerton, D.: Language and Species. The Univ. of Chicago Press (1992)Google Scholar
  4. Bufill, E., Carbonell, E.: Are symbolic behaviour and neuroplasticity an example of gene-culture coevolution (in Spanish)? Rev. Neurol. 39 (2004) 48–55Google Scholar
  5. Caceres, M., Lachuer, J., Zapala, M.A., Redmond, J.C., Kudo, L., Geschwind, D.H., Lockhart, D.J., Preuss, T.M., Barlow, C.: Elevated gene expression levels distinguish human from non-human primate brains. Proc. Natl. Acad. Sci. USA 100 (2003) 13030–13035CrossRefGoogle Scholar
  6. Calabretta, R., Ferdinando, A.D., Wagner, G.P., Parisi, D.: What does it take to evolve behaviorally complex organisms? BioSystems 69 (2003) 245–262CrossRefGoogle Scholar
  7. Calvin, W.H., Bickerton, D.: Lingua ex Machina: Reconciling Darwin and Chomsky with the Human Brain. MIT Press, Cambridge (2000)Google Scholar
  8. Changeux, J.-P.: L’Homme Neuronal. Librairie Arthème Fayard, Paris (1983)Google Scholar
  9. Christiansen, M.H., Kirby, S.: Language evolution: consensus and controversies. Trends Cogn. Sci. 7 (2003) 300–307CrossRefGoogle Scholar
  10. Cooper, R., DeJong, D.V., Forshyte, R, Ross, T.W.: Communication in Coordination Games. Quart J Econ 107 (1992) 739–771CrossRefGoogle Scholar
  11. Dalalakis, J.E.: Morphological representation in specific language impairment: evidence from Greek word formation. Folia Phoniatr. Logop. 51 (1999) 20–35CrossRefGoogle Scholar
  12. Deacon, T.: The Symbolic Species. The coevolution of language and the brain. Norton, New York (1997)Google Scholar
  13. De Beule, J., Steels, L.: Hierarchy in Fluid Construction Grammar. In Furbach U. (ed), Proceedings of KI-2005, Berlin: Springer-Verlag, Berlin (2005) 1–15Google Scholar
  14. DeFelipe, J., Alonso-Nanclares, L., Arellano, J.I.: Microstructure of the neocortex: Comparative aspects. J. Neurocytol. 31 (2002) 299–316CrossRefGoogle Scholar
  15. Dubs, A., Laughlin, S.B., Srinivasan, M.V.: Single photon signals in fly photoreceptors and first order interneurones at behavioral threshold. J. Physiol. 317 (1981) 317–334Google Scholar
  16. Elman, J.L., Bates, E., Johnson, M.H., Karmiloff-Smith, A., Parisi, D., Plunkett, K.: Rethinking Innateness. MIT Press, Cambridge (1996)Google Scholar
  17. Elston, G.N., Benavides-Piccione, R., DeFelipe, J.: The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey. J. Neurosci.21 (2001) 1–5Google Scholar
  18. Embick, D., Marantz, A., Miyashita, Y., O’Neil, W., Sakai, K.L.: A syntactic specialization for Broca’s area. Proc. Natl. Acad. Sci. USA 97 (2000) 6150–6154CrossRefGoogle Scholar
  19. Enard, W., Przeworski, M., Fisher, S.E., Lai, C.S.L., Victor Wiebe, V., Kitano, T., Monaco, A.P. & Paabo, S.: Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418 (2002) 869–872.CrossRefGoogle Scholar
  20. Everett, D.: Cultural Constraints on Pirahã Grammar. Curr.Anthropol. 46 (2005) 621–646CrossRefGoogle Scholar
  21. Fitch, W.T., Hauser, M.D.: Computational constraints on syntactic processing in nonhuman primates. Science 303 (2004) 377–380CrossRefGoogle Scholar
  22. Flint, J.: The genetic basis of cognition. Brain 122 (1999) 2015–2031CrossRefGoogle Scholar
  23. Fullmer, B., Miikkulainen, R.: Using marker-based genetic encoding of neural networks to evolve finite-state behaviour. In Varela, F. J., Bourgine, P. (eds): Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life. MIT Press, Cambridge, MA (1992) 255–262Google Scholar
  24. Gerdes, L.U., Gerdes, C., Hansen, P.S., Klausen, I.C., Faergman, O.: Are men carrying the apolipoprotein \(\upvarepsilon 4-\) or \(\upvarepsilon\)2 allele less fertile than \(\upvarepsilon\)3 \(\upvarepsilon\)3 genotypes? Hum. Genet. 98 (1996) 239–242CrossRefGoogle Scholar
  25. Goldberg, T.E., Weinberger, D.R.: Genes and the parsing of cognitive processes. Trends Cogn. Sci. 8 (2004) 325–335CrossRefGoogle Scholar
  26. Gopnik, M.: Feature-blind grammar and dysphasia. Nature 344 (1990) 715CrossRefGoogle Scholar
  27. Gopnik, M.: Familial language impairment: more English evidence. Folia Phoniatr. Logop. 51 (1999) 5–19CrossRefGoogle Scholar
  28. Greenfield, P.M.: Language, tool use and the brain: the ontogeny and phylogeny of hierarchically organized sequential behaviour. Behav. Brain Sci. 14 (1991) 531–595CrossRefGoogle Scholar
  29. Haesler, S., Wada, K., Morrisey, E.E., Lints, T., Jarvis, E.D., Scharff, C.: FoxP2 expression in avian vocal learners and non-learners. J. Neurosci. 24 (2004) 3164–3175CrossRefGoogle Scholar
  30. Hauser, M.D., Chomsky, N. Fitch, W. T.: The faculty of language: What is it, who has it, and how did it evolve? Science 298 (2002) 1569–1579CrossRefGoogle Scholar
  31. Hewes, G.: Primate Communication and the Gestural Origin of Language. Current Anthropology. 14 (1973) 5–25CrossRefGoogle Scholar
  32. Hill, R.S. & Walsh, C.A.: Molecular insights into human brain evolution. Nature 437 (2005) 64–67CrossRefGoogle Scholar
  33. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Systems 1 (1987) 495–502zbMATHGoogle Scholar
  34. Hockett, C. F.: The origin of speech. Sci. Am. 203 (1960) 88–111CrossRefGoogle Scholar
  35. Hurkens S., Schlag, K.H. Communication, Coordination, and Efficiency in Evolutionary One-Population Models. Universitat Pompeu Fabra Department of Economics (1999) Working Paper No. 387Google Scholar
  36. Jackendoff, R.S.: Languages of the Mind. MIT Press, Cambridge MA (1992)Google Scholar
  37. Jeffery, K.J., Reid, I.C.: Modifiable neuronal connections: An overview for psychiatrists. Am. J. Psychiatry 154 (1997) 156–164Google Scholar
  38. Johnston, M.V.: Developmental disorders of activity dependent neuronal plasticity. Ind. J. Pediat. 68 (2001) 423–426CrossRefGoogle Scholar
  39. Kandel, E.R., Schwartz, J.H. & Jessell, T.M.: Principles of Neural Science. Fourth Edition. McGraw-Hill, New York (2000)Google Scholar
  40. Khaitovich, P., Muetzel, B., She, X., Lachmann, M., Hellmann, I., Dietzsch, J., Steigele, S., Do, H.H., Weiss, G., Enard, W., Heissig, F., Arendt, T., Nieselt-Struwe, K., Eichler, E.E., Paabo, S.: Regional patterns of gene expression in human and chimpanzee brains. Genome Res. 14 (2004) 1462–73CrossRefGoogle Scholar
  41. Krubitzer, L. & Kaas, J.: The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr. Op. Neurobiol. 15 (2005) 444–453CrossRefGoogle Scholar
  42. Lai, C.S.L., Gerelli, D., Monaco, A.P. Fisher, S.E., Copp, A.J.: FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126 (2003) 2455–2462CrossRefGoogle Scholar
  43. Levi, O., Jongen-Relo, A.L., Feldon, J., Roses, A.D., Michaelson, D.M.: ApoE4 impairs hippocampal plasticity isoform-specifically and blocks the environmental stimulation of synaptogenesis and memory. Neurobiol. Disease 13 (2003) 273–282CrossRefGoogle Scholar
  44. Li, W.-H., Saunders, M.A.: The chimpanzee and us. Nature 437 (2005) 50–51CrossRefGoogle Scholar
  45. Lieberman, P: On the nature and evolution of the neural bases of human language. Am. J. Phys. Anthropol. 35 (2002) 36–62CrossRefGoogle Scholar
  46. Marcus, G.F.: Rethinking eliminative connectionism. Cogn. Psychol. 37 (1998) 243–282CrossRefGoogle Scholar
  47. Marcus, G.F., Fisher, S. E.: FOXP2 in focus: what can genes tell us about speech and language. Trends Cogn. Sci. 7 (2003) 257–262CrossRefGoogle Scholar
  48. Maynard Smith, J.: Evolutionary Genetics. Oxford Univ. Press (1998)Google Scholar
  49. Maynard Smith, J., Szathmáry, E. The Major Transitions in Evolution. Freeman, Oxford (1995)Google Scholar
  50. Musso, M., Weiller, C., Kiebel, S., Müller, S.P., Bülau, P. Rijntjes, M.: Training-induced brain plasticity in aphasia. Brain 122 (1999) 1781–1790CrossRefGoogle Scholar
  51. Müller, R.-A., Rothermel, R.D., Behen, M.E., Muzik, O., Chakraborty, P.K. & Chugani, H.T.: Language organization in patients with early and late left-hemisphere lesion: a PET study. Neuropsychol. 37 (1999) 545–557CrossRefGoogle Scholar
  52. Neville, H. J., Bavelier, D.: Neural organization and plasticity of language. Curr. Op. Neurobiol. 8 (1998) 254–258CrossRefGoogle Scholar
  53. Nielsen, R., Bustamante, C., Clark, A.G., Glanowski, S., Sackton, T.B. et al.: A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3 (6) (2005) e170CrossRefGoogle Scholar
  54. Nobre, A.C., Plunkett, K.: The neural system of language: structure and development. Curr. Op. Neurobiol. 7 (1997) 262–268CrossRefGoogle Scholar
  55. Nolfi, S., Floreano, D.: Synthesis of autonomous robots through evolution. Trends Cogn. Sci. 6 (2002) 31–37CrossRefGoogle Scholar
  56. Paterson, S.J., Brown, J.H., Gsödl, M.K., Johnson, M.H., Karmiloff-Smith, A.: Cognitive modularity and genetic disorders. Science 286 (1999) 2355–2357CrossRefGoogle Scholar
  57. Pica, P., Lemer, C., Izard, V., Dehaene, S.: Exact and approximate arithmetics in an Amazonian indigene group. Science 306 (2004) 499–503CrossRefGoogle Scholar
  58. Pinker, S., Bloom, P.: Natural language and natural selection. Behav. Brain Sci. 13 (1990) 707–784.CrossRefGoogle Scholar
  59. Pinker, S., Jackendoff, R.: The faculty of language: What’s special about it? Cognition 95 (2005) 201–236CrossRefGoogle Scholar
  60. Premack, D.: Is language the key to human intelligence? Science 303 (2004) 318–320CrossRefGoogle Scholar
  61. Preuss, T.M.: Taking the measure of diversity: Comparative alternatives to the model-animal paradigm in cortical neuroscience. Brain Behav. Evol. 55 (2000) 287–299CrossRefGoogle Scholar
  62. Raber, J., Wong, D., Yu, G., Buttini, M., Mahley, R.W., Pitas, R.E., Mucke, L.: Apolipoprotein E and cognitive performance. Nature 404 (2000) 353–353CrossRefGoogle Scholar
  63. Rapoport, S.I.: How did the human brain evolve? A proposal based on new evidence from in vivo brain imaging during attention and ideation. Brain Res. Bull. 50 (1990) 149–165CrossRefGoogle Scholar
  64. Rolls, E.T., Stringer, S.M.: On the design of neural networks in the brain by genetic evolution. Prog Neurobiol 61 (2000) 557–579CrossRefGoogle Scholar
  65. Rose, Y., Royle, P.: Uninflected structure in familial language impairment: evidence from French. Folia Phoniatr. Logop. 51 (1999) 70–90CrossRefGoogle Scholar
  66. Schmitt, A.M., Shi, J., Wolf, A. M., Lu, C.-C., King, L.A., Zou, Y.: Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature 439 (2006) 31–37Google Scholar
  67. Senghas, A., Kita S., özyürek, A.: Children creating properties of language: Evidence from an emerging sign language in Nicaragua. Science 305 (2004) 1779–1782CrossRefGoogle Scholar
  68. Shu, W., Cho, J.Y., Jiang, Y., Zhang, M., Weisz, D., Elder, G.A., Schmeidler, J., De Gasperi, R., Sosa, M.A., Rabidou, D., Santucci, A.C., Perl, D., Morrisey, E., Buxbaum, J.D.: Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci USA 102 (2005) 9643–9648CrossRefGoogle Scholar
  69. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8 (2004) 418–425CrossRefGoogle Scholar
  70. Steels, L.: Evolving grounded communication for robots. Trends Cogn. Sci. 7 (2003) 308–312CrossRefGoogle Scholar
  71. Steels, L., De Beule, J.: Unify and Merge in Fluid Construction Grammar. forthcoming, 2006.Google Scholar
  72. Stromswold, K.: The heritability of language: a review and metaanalysis of twin, adoption, and linkage studies. Language 77 (2001) 647–723CrossRefGoogle Scholar
  73. Sur, M., Learney, C.A.: Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2 (2001) 251–262CrossRefGoogle Scholar
  74. Számadó, S., Szathmáry, E.: Language evolution: competing selective scenarios. Trends Ecol. Evol. Submitted (2006)Google Scholar
  75. Szathmáry, E.: Origin of the human language faculty: the language amoeba hypothesis. In (J. Trabant & S. Ward, Eds.): New Essays on the Origin of Language. Mouton/de Gruyter, Berlin/New York (2001) 41–51.Google Scholar
  76. Szathmáry, E.: Cultural processes: the latest major transition in evolution. In: L. Nadel (ed.) Encyclopedia of Cognitive Science Nature Publishing Group, Macmillan, London (2003)Google Scholar
  77. Teramitsu, I., Kudo, L.C., London, S.E., Geschwind, D.H., White, S.A. Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J. Neurosci. 24 (2004) 3152–3163CrossRefGoogle Scholar
  78. Teter, B., Xu, P., Gilbert, J.R., Roses, A.D., Galasko, D., Cole, M.D.: Defective neuronal sprouting by human apolipoprotein E4 is a gain-of-negative function. J. Neurosci. Res. 68 (2002) 331–336CrossRefGoogle Scholar
  79. Toma, D.T. et al.: Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat. Genet. 31 (2002) 349–353Google Scholar
  80. Tomblin, J.B., Pandich, J.: Lessons from children with specific language impairment. Trends Cog. Sci. 3 (1999) 283–285CrossRefGoogle Scholar
  81. Van der Lely, H.J.K., Rosen, S., McClelland, A.: Evidence for a grammar-specific deficit in children. Curr. Biol. 8 (1998) 1253–125.CrossRefGoogle Scholar
  82. Vargha-Kadem, F., Watkins, K.E., Price, C.J., Ashburner, J., Alcock, K.J., Connelly, A., Frackowiak, R.S.J., Friston, K.J., Pembrey, M.E., Mishkin, M., Gadian, D.G. Passingham, R.E.: Neural basis of an inherited speech and language disorder. Proc. Natl. Acad. Sci. USA 95 (1998) 12695–12700CrossRefGoogle Scholar
  83. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67–82CrossRefGoogle Scholar
  84. Worden, R.P.: A speed limit for evolution. J. theor. Biol. 176 (1995) 137–152CrossRefGoogle Scholar
  85. Wyles, J.S., Kunkel, J.G., Wilson, A.C.: Birds, behaviour, and anatomical evolution. Proc. Natl. Acad. Sci. USA 80 (1983) 4394–4397CrossRefGoogle Scholar
  86. Zhang, B., Mühlenbein, H.: Genetic programming of minimal neural nets using Occam’s razor. Proc. of the Fifth Int. Conf. on Genetic Algorithms (1993) 342–349Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Eörs Szathmáry
    • 1
    • 2
    • 3
  • Zoltán Szathmáry
    • 1
    • 2
    • 3
  • Péter Ittzés
    • 1
    • 2
    • 3
  • GeroŐ Orbaán
    • 1
    • 2
    • 3
  • István Zachár
    • 1
  • Ferenc Huszár
    • 1
    • 2
    • 3
  • Anna Fedor
    • 1
    • 2
    • 3
  • Máté Varga
    • 1
    • 2
    • 3
  • Szabolcs Számadó
    • 1
    • 2
    • 3
  1. 1.Collegium Budapest (Institute for Advanced Study)Hungary
  2. 2.Institute of Biology, Eötvös UniversityBudapestHungary
  3. 3.Parmenides Center for the Study of ThinkingMünchenGermany

Personalised recommendations