Extracting Product Features and Opinions from Reviews

  • Ana-Maria Popescu
  • Orena Etzioni

Abstract

which are expressed in newsgroup posts, review sites, and elsewhere. As a result, the problem of “opinion mining” has seen increasing attention over the past three years from [1], [2] and many others. This chapter focuses on product reviews, though we plan to extend our methods to a broader range of texts and opinions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: Procs. of ACL. (2002) 417–424Google Scholar
  2. 2.
    Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: Procs. of KDD, Seattle, WA (2004) 168–177Google Scholar
  3. 3.
    Lin, D.: Dependency-based evaluation of MINIPAR. In: Procs. of ICLRE’98 Workshop on Evaluation of Parsing Systems. (1998)Google Scholar
  4. 4.
    Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland, S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence 165(1) (2005) 91–134CrossRefGoogle Scholar
  5. 5.
    Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In: Procs. of the Twelfth European Conference on Machine Learning (ECML), Freiburg, Germany (2001) 491–502Google Scholar
  6. 6.
    Popescu, A., Yates, A., Etzioni, O.: Class extraction from the World Wide Web. In: AAAI-04 Workshop on Adaptive Text Extraction and Mining. (2004) 68–73Google Scholar
  7. 7.
    Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment Analyzer: Extracting Sentiments about a Given Topic Using Natural Language Processing Techniques. In: Procs. of ICDM. (2003) 1073–1083Google Scholar
  8. 8.
    Hatzivassiloglou, V., McKeown, K.: Towards the automatic identification of adjectival scales: clustering adjectives according to meaning. In: Procs. of ACL. (1993) 182–192Google Scholar
  9. 9.
    Kim, S., Hovy, E.: Determining the sentiment of opinions. In: Procs. of COLING. (2004)Google Scholar
  10. 10.
    Hatzivassiloglou, V., McKeown, K.: Predicting the semantic orientation of adjectives. In: Procs. of ACL/EACL. (1997) 174–181Google Scholar
  11. 11.
    Hummel, R., Zucker, S.: On the foundations of relaxation labeling processes. In: PAMI. (1983) 267–287Google Scholar
  12. 12.
    Rangarajan, A.: Self annealing and self annihilation: unifying deterministic annealing and relaxation labeling. In: Pattern Recognition, 33:635–649. (2000)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Turney, P.: Inference of Semantic Orientation from Association. In: CoRR cs. CL/0309034. (2003)Google Scholar
  14. 14.
    Fargier, H., Lang, J.: A constraint satisfaction framework for decision under uncertainty. In: Procs. of UAI. (1995) 167–174Google Scholar
  15. 15.
    Kobayashi, N., Inui, K., Tateishi, K., Fukushima, T.: Collecting Evaluative Expressions for Opinion Extraction. In: Procs. of IJCNLP. (2004) 596–605Google Scholar
  16. 16.
    Berland, M., Charniak, E.: Finding parts in very large corpora. In: Procs. of ACL. (1999) 57–64Google Scholar
  17. 17.
    Almuhareb, A., Poesio, M.: Attribute-based and value-based clustering: An evaluation. In: Procs. of EMNLP. (2004) 158–165Google Scholar
  18. 18.
    Morinaga, S., Yamanishi, K., Tateishi, K., Fukushima, T.: Mining product reputations on the web. In: Procs. of KDD. (2002) 341–349Google Scholar
  19. 19.
    Kushal, D., Lawrence, S., Pennock, D.: Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In: Procs. of WWW. (2003)Google Scholar
  20. 20.
    Riloff, E., Wiebe, J., Wilson, T.: Learning Subjective Nouns Using Extraction Pattern Bootstrapping. In: Procs. of CoNLL. (2003) 25–32sGoogle Scholar
  21. 21.
    Takamura, H., Inui, T., Okumura, M.: Extracting Semantic Orientations of Words Using Spin Model. In: Procs. of ACL. (2005) 133–141Google Scholar
  22. 22.
    Pang, B, L.L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Procs. of EMNLP. (2002) 79–86Google Scholar
  23. 23.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. In: Procs. of HLT-EMNLP. (2005)Google Scholar
  24. 24.
    Wilson, T., Wiebe, J., Hwa, R.: Just how mad are you? finding strong and weak opinion clauses. In: Procs. of AAAI. (2004) 761–769Google Scholar
  25. 25.
    Gamon, M.: Sentiment classification on customer feedback data: Noisy data, large feature vectors and the role of linguistic analysis. In: Procs. of COLING. (2004) 841–847Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Ana-Maria Popescu
    • 1
  • Orena Etzioni
    • 1
  1. 1.Department of Computer ScienceUniversity of WashingtonSeattleUSA

Personalised recommendations