Cellular Automata Music: From Sound Synthesis to Musical Forms

  • EDUARDO R. MIRANDA

Abstract

Cellular automata (CA) are tools for computational modelling widely used to model systems that change some feature with time. They are suitable for modelling dynamic systems in which space and time are discrete, and quantities take on a finite set of discrete values. CA are highly suitable for modelling music: music is fundamentally time-based and it can be thought of as a system in which a finite set of discrete values (e.g. musical notes, rhythms, etc.) evolve in space and time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyls, P. (1989). The musical universe of cellular automata. In Proceedings of the International Computer Music Conference (ICMC 1989). Columbus, OH, USA, pp. 34–41.Google Scholar
  2. Burraston, D. (2005). Composition at the edge of chaos. In Proceedings of the 2005 Australasian Computer Music Conference. Brisbrane, Australia.Google Scholar
  3. Chareyron, J. (1990). Digital synthesis of self-modifying waveforms by means of linear automata. Computer Music Journal 14(4): 25–40.CrossRefGoogle Scholar
  4. Cood, E.F. (1968). Cellular Automata. Academic Press, London.Google Scholar
  5. Dewdney, A.K. (1989). Computer recreations: A cellular universe if debris, droplets, defects and demons. Scientific American August: 88–91.Google Scholar
  6. Epstein, J.M. and Axtell, R.L. (1996). Growing Artificial Societies: Social Science from the Bottom Up. The MIT Press, Cambridge, MA.Google Scholar
  7. Ermentrout, G.B. and Edelstein-Keshet, L. (1993). Cellular automata approaches to biological modelling. Journal of Theoretical Biology 160: 97–133.CrossRefGoogle Scholar
  8. Gabor, D. (1947). Acoustical quanta and the theory of hearing. Nature 159(4044): 591–594.Google Scholar
  9. Gerhardt, M., Schuster, H. and Tyson, J. (1990). A cellular automaton model of excitable media. III: Fitting the Belousov–Zhabotinskii reaction. Physica D 46(3): 416– 426.MATHCrossRefMathSciNetGoogle Scholar
  10. Hoffman, P. (2002). Towards and automated art: Algorithmic processes in Xenakis' compositions. Contemporary Music Review 21(2/3): 121–131.CrossRefGoogle Scholar
  11. Hogeweg, P. (1988). Cellular automata as a paradigm for ecological modelling. Applied Mathematics and Computation 27: 81–100.MATHCrossRefMathSciNetGoogle Scholar
  12. Karplus, K. and Strong, A. (1983). Digital synthesis of plucked string and drum timbres. Computer Music Journal 7(2): 43–55.CrossRefGoogle Scholar
  13. Kreger, T. (1999). Real-time cellular automata filters Implemented with Max/MSP. In Proceedings of the Australasian Computer Music Conference 1999. Victoria University of Wellington, New Zealand.Google Scholar
  14. Langton, C. (1990). Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 42: 12–37.CrossRefMathSciNetGoogle Scholar
  15. McAlpine, K., Miranda, E. and Hoggar, S. (1999). “Making music with algorithm: A case study system”, Computer Music Journal 23(2): 19–30.CrossRefGoogle Scholar
  16. Millen, D. (1990). Cellular automata music. In Proceedings of the International Computer Music Conference (ICMC 1990). Glasgow, UK, pp. 314–316.Google Scholar
  17. Miranda, E.R., Correa, J.S. and Wright, J. (2000). Categorising complex dynamic sounds. Organised Sound 5(2): 95–102.CrossRefGoogle Scholar
  18. Miranda, E.R. (1990). Cellular Automata Music Investigation. MSc in Music Technology final project report. University of York, UK.Google Scholar
  19. Miranda, E.R. (1993). Cellular automata music: An interdisciplinary project. Interface 22(1): 3–21.Google Scholar
  20. Miranda, E.R. (1995). Chaosynth – Computer music meets high-performance computing. Supercomputer 11(1): 16–23.Google Scholar
  21. Miranda, E.R. (2002). Generating source streams for extralinguistic utterances. Journal of the Audio Engineering Society (AES) 50(3): 165–172.Google Scholar
  22. Orton, R., Hunt, A. and Kirk, R. (1991). Graphical control of granular synthesis using a cellular automata and the freehand program. In Proceedings International Computer Music Conference (ICMC 1991). McGill University, Montreal, Canada, pp. 416–418.Google Scholar
  23. Preston, K. and Duff, M. (1984). Modern Cellular Automata: Theory and Applications. Plenum, New York, NY.MATHGoogle Scholar
  24. Risset, J.-C. (1991). Timbre et synthèse des sons. In J.-B. Barrière (Ed.), Le timbre: métaphore pour la composition. IRCAM/Christian Bourgois Editeur, Paris.Google Scholar
  25. Roads, C. (1991). “synchronous granular synthesis” In G. de Poli et al. (Eds.), Representations of Music Signals. The MIT Press, Cambridge, MA.Google Scholar
  26. Schaeffer, P. (1966). Traité des objets musicaux. Editions du Seuil, Paris.Google Scholar
  27. Trott, M. (2004). The Mathematica Guidebook: Programming. Springer-Verlag, New York.Google Scholar
  28. Truax, B. (1988). “Real time granular synthesis with a DSP computer” Computer Music Journal 2(2): 14–26.CrossRefGoogle Scholar
  29. Vaidhyanathan, S., Minai, A. and Helmuth, M. (1999). ca: A system for granular processing of sound using cellular automata. In Proceedings of the 2nd COST G-6 Workshop on Digital Audio (DAFx 1999). Norwegian University of Science and Technology (NTNU), Trondheim, Norway.Google Scholar
  30. Wilson, G. (1988). The life and times of cellular automata. News Scientist October: 44–47.Google Scholar
  31. Winkler, T. (2001). Composing Interactive Music: Techniques and Ideas Using Max. The MIT Press, Cambridge, MA.Google Scholar
  32. Wolfram, S. (1994). Universality and complexity in cellular automata. Physica D 10: 1–35.CrossRefMathSciNetGoogle Scholar
  33. Xenakis, I. (1971). Formalized Music. Indiana University Press, Bloomington, IN.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • EDUARDO R. MIRANDA

There are no affiliations available

Personalised recommendations