Advertisement

An Introduction to Evolutionary Computing for Musicians

  • PHIL HUSBANDS
  • PETER COPLEY
  • ALICE ELDRIDGE
  • JAMES MANDELIS

Abstract

The aim of this chapter is twofold: to provide a succinct introduction to evolutionary computing, outlining the main technical details, and to raise issues pertinent to musical applications of the methodology. Thus this chapter should furnish readers with the necessary background needed to understand the remaining chapters in this volume as well as open up a number of important themes relevant to this collection.

Keywords

Adaptive System Cellular Automaton Evolutionary Computing Musical Composition Sound Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Back, T., Hoffmeister, F. and Schwefel, H. (1991). A survey of evolution strategies. In R. Belew and L. Booker (Eds.), Proceedings of the 4th International Conference on GAs. Morgan Kaufmann, San Fransisco, CA, pp. 2–9.Google Scholar
  2. Back, T. and Schwefel, H.-P. (1993). An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1): 1–23.Google Scholar
  3. Bagley, J. (1967). The Behaviour of Adaptive Systems that Employ Genetic and Correlation Algorithms. PhD Thesis, University of Michigan.Google Scholar
  4. Beer, R.D. (1990). Intelligence as Adaptive Behaviour: An Experiment in Computational Neuroethology. Academic Press, New York.zbMATHGoogle Scholar
  5. Bentley, P.J. (Ed.) (1999). Evolutionary Design by Computers. Academic Press, London.zbMATHGoogle Scholar
  6. Biles, J. (1994). Genjam: A genetic algorithm for generating jazz solos. In Proceedings of the International Computer Music Conference. Aarhus, Denmark. pp. 131–137. Available online at http://www.it.rit.edu/-jab/Genjam94/Paper.html.Google Scholar
  7. Bilotta, E., Miranda, E. R., Pantano, P. and Todd, P. (Eds.) (2001). Proceedings of the ALMMA 2001: Artificial Life Models for Musical Applications Workshop, ECAL 2001.Google Scholar
  8. Blackwell, T. and Young, M. (2004). Self-organised music. Organised Sound 9(2): 137–150.CrossRefGoogle Scholar
  9. Bown, O. and Lexer, S. (2006). Continuous-time recurrent neural networks for generative and interactive musical performance. In F. Rothlauf et al. (Eds.), Applications of Evolutionary Computing: Proceedings EvoWorkshops 2006, LNCS 3907, Springer, Berlin, pp. 652–664.Google Scholar
  10. Burton, A.R. and Vladimirova, T. (1999). Generation of musical sequences with genetic techniques. Computer Music Journal 23(4): 59–73.CrossRefGoogle Scholar
  11. Collins, R. and Jefferson, D. (1991). Selection in massively parallel genetic algorithms. In Belew, R. and Booker, L. (Eds.), Proceedings of the 4th International Conference on GAs. Morgan Kaufmann, San Fransisco, CA, pp. 249–256.Google Scholar
  12. Cook, N. (1990). Music, Imagination, and Culture. Clarendon Press, Oxford.Google Scholar
  13. Cope, D. (2000). The Algorithmic Composer. A-R Editions, Wisconsin.Google Scholar
  14. Dahlstedt, P. (2001). Creating and exploring huge parameter spaces: Interactive evolution as a tool for sound generation. In Proceedings of the International Computer Music Conference. Habana, Cuba.Google Scholar
  15. Darwin, C. (1859). The Origin of Species. John Murray, London.Google Scholar
  16. Davis, L. (1990). The Handbook of Genetic Algorithms. Van Nostrand Reinhold, Princeton, NJ.Google Scholar
  17. Eiben, A.E. and Smith, J.E. (2003). Introduction to Evolutionary Computing. Springer, Berlin.zbMATHGoogle Scholar
  18. Eldridge, A.C. (2005). Cyborg dancing: Generative systems for man machine musical improvisation. In Proceedings of the Third Iteration. Melbourne, Australia.Google Scholar
  19. Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Clarendon Press, Oxford.zbMATHGoogle Scholar
  20. Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966). Artificial Intelligence through Simulated Evolution. John Wiley, New York.zbMATHGoogle Scholar
  21. Garcia, R. (2001). Growing sound synthesizers using evolutionary methods. In E. Bilotta, E. R. Miranda, P. Pantano, and P. M. Todd (Eds.), Proceedings of ALMMA 2001 Workshop on Artificial Life Models for Musical Applications, Cosenza, Italy. Editoriale Bios, pp. 99–107.Google Scholar
  22. Gartland-Jones, A. (2003). Music box: A real-time algorithmic composition system incorporating a distributed interactive genetic algorithm. In G. Raidl et al. (Eds.), Proceedings of the EvoWorkshops/EuroGP 2003. Springer, Berlin, pp. 490–501.Google Scholar
  23. Gartland-Jones, A. and Copley, P. (2003). The suitability of genetic algorithms for musical composition. Contemporary Music Review 22(3): 43–55.CrossRefGoogle Scholar
  24. Gartland-Jones, A. and Copley, P. (2005). Musical form and algorithmic solutions. In Proceedings of the Creativity and Cognition Conference, Goldsmiths College, London. ACM, pp. 226–231.Google Scholar
  25. Garnett, G.E. (2001). The aesthetics of interactive computer music. Computer Music Journal 25(1): 21–33.CrossRefGoogle Scholar
  26. Goldberg, D. (1989). Genetic Algorithms. Addison-Wesley, Reading, MA.zbMATHGoogle Scholar
  27. Grefenstette, J. (Ed.) (1987). Proceedings of the 2nd International Conference on GAs. Lawrence Erlbaum, Hillsdale, NJ.Google Scholar
  28. Haldane, J.B.S. (1932). The Causes of Evolution, Longman, Green, London.Google Scholar
  29. Harvey, I. (1992). Species adaptation genetic algorithms: A basis for a continuing SAGA. In F.J. Varela and P. Bourgine (Eds.), Proceedings of the 1st European Conference on Artificial Life. MIT Press/Bradford Books, Cambridge, MA, pp. 346–354.Google Scholar
  30. Hillis, W.D. (1990). Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42: 228–234.CrossRefGoogle Scholar
  31. Hodgson, P. (1999). Modelling cognition in musical improvisation through evolution. In A. Patrizio, G.A. Wiggins and H. Pain (Eds.), Proceedings of the AISB'99 Symposium on Musical Creativity. SSAISB, Brightom, pp. 15–19.Google Scholar
  32. Hodgson, P. (2002). Artificial evolution, music and methodology. In Proceedings of the 7th International Conference on Music Perception and Cognition. Sydney, pp. 244–248.Google Scholar
  33. Holland, J. (1962). Outline for a logical theory of adaptive systems. Journal of the Association of Computing Machinery 3: 297–314.Google Scholar
  34. Holland, J. (1966). Universal spaces: A basis for studies of adaptation. In E. Caianiello (Ed.), Automata Theory. Academic Press, New York, pp. 218–231.Google Scholar
  35. Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI.Google Scholar
  36. Horner, A. and Goldberg, D. (1991). Genetic algorithms and computer assisted music composition. In R. Belew and L. Booker (Eds.), Proceedings of the 4th International Conference on GAs. Morgan Kaufmann, San Fransisco, CA, pp. 437–441.Google Scholar
  37. Husbands, P. (1993). An ecosystems model for integrated production planning. International Journal of Computer Integrated Manufacturing 6(1/2): 74–86.CrossRefGoogle Scholar
  38. Huxley, J.S. (1942). Evolution: The Modern Synthesis. Allen and Unwin, London.Google Scholar
  39. Jacob, B. (1996). Algorithmic composition as a model of creativity. Organised Sound 1(3): 157–165.CrossRefGoogle Scholar
  40. Jakobi, N. (1998). Evolutionary robotics and the radical envelope of noise hypothesis. Adaptive Behaviour 6: 325–368.CrossRefGoogle Scholar
  41. Johnson, C. (1999). Exploring the sound-space of synthesis algorithms using in interactive genetic algorithms. In A. Patrizio, G. Wiggins and H. Pain (Eds.), Proceedings of the AISB'99 Symposium on AI and Musical Creativity. SSAISB, Brighton.Google Scholar
  42. Juillé, H. and Pollack, J.B. (1996). Co-evolving intertwined spirals. In Proceedings of the Fifth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA, pp. 461–468.Google Scholar
  43. Keller, H. (1987). Criticism. Faber & Faber, London.Google Scholar
  44. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA.zbMATHGoogle Scholar
  45. Langton, C. (1995). Artificial Life: An Overview. MIT Press, Cambridge, MA.Google Scholar
  46. Lischka, C. (1991). Understanding music cognition: A connectionist view. In G. De Poli, A. Piccialli and C. Roads (Eds.), Representations of Musical Signals. MIT Press, Cambridge, MA, pp. 417–445.Google Scholar
  47. Machover, T. (1991). Program Notes for the International Computer Music Conference. International Computer Music Association, San Fransisco.Google Scholar
  48. Machover, T. and Chung, J. (1989). Hyperinstruments: Musically intelligent and interactive performance and creativity systems. In Proceedings of the 1989 International Computer Music Conference. International Computer Music Association, San Francisco, pp. 186–190.Google Scholar
  49. Mandelis, J. (2001). Genophone: An evolutionary approach to sound synthesis and performance. In E. Bilotta et al. (Eds.). Proceedings of ALMMA Workshop, pp. 37–50. Available online at http://www.cogs.susx.ac.uk/users/jamesm/Papers/ ECAL(2001)ALMMAMandelis.ps.Google Scholar
  50. Mandelis, J. (2002). Adaptive hyperinstruments: Applying evolutionary techniques to sound synthesis and performance. In Proceedings of the NIME 2002: New Interfaces for Musical Expression. Dublin, Ireland, pp. 192–193. Available online at http://www.cogs.susx.ac. uk/users/jamesm/Papers/NIME(2002)Mandelis.pdf.Google Scholar
  51. Mandelis, J. and Husbands, P. (2003). Musical interaction with artificial life forms: Sound synthesis and performance mappings. Contemporary Music Review 22(3): 69–77.CrossRefGoogle Scholar
  52. McCormack, J. (2003). Evolving sonic ecosystems. Kybernetes: The International Journal of Systems & Cybernetics 32(1/2): 184–202.CrossRefGoogle Scholar
  53. Michalewicz, Z. and Fogel, D.B. (2004). How to Solve It: Modern Heuristics. Springer, Berlin.zbMATHGoogle Scholar
  54. Miranda, E. R. (2000). The art of rendering sounds from emergent behaviour: Cellular automata granular synthesis. In Proceedings of the 26th EUROMICRO Conference. Maastricht, The Netherlands (published by IEEE Computer Society).Google Scholar
  55. Miranda, E.R. (2003). On the music of emergent behaviour: What can evolutionary computation bring to the musician? Leonardo 36(1): 55–59.CrossRefGoogle Scholar
  56. Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.Google Scholar
  57. Morris, R.O. (1922). Contrapuntal Technique In The Sixteenth Century. Oxford University Press, Oxford.Google Scholar
  58. Mulder, A. (1994). Virtual musical instruments: Accessing the sound synthesis universe as a performer. In Proceedings of the First Brazilian Symposium on Computer Music. Caxambu, Brazil, pp. 243–250.Google Scholar
  59. Pollack, J., Bedau, M., Husbands, P., Ikegami T. and Watson R. (Eds.) (2004). Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems. MIT Press, Cambridge, MA.Google Scholar
  60. Pressing, J. (1990). Cybernetic issues in interactive performance systems. Computer Music Journal 14(1): 12–25.CrossRefGoogle Scholar
  61. Rechenberg, I. (1965). Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment Translation No. 1122, Ministry of Aviation, Farnborough.Google Scholar
  62. Reynolds, C.W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21(4): 25–34.CrossRefMathSciNetGoogle Scholar
  63. Rosen, C. (1980). Sonata Forms. Norton, New York.Google Scholar
  64. Rovan, J.B., Wanderley, M.M., Dubnov, S. and Depalle, P. (1997). Instrumental gestural mapping strategies as expressivity determinants in computer music performance. Presented at Kansei—The Technology of Emotion Workshop.Google Scholar
  65. Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., Hallam, J. and Meyer, J.-A. (2004). From animals to animats 8: Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior. MIT Press, Cambridge, MA.Google Scholar
  66. Schmitt, L.M. (2001). Theory of genetic algorithms. Theoretical Computer Science 259: 1–61.zbMATHCrossRefMathSciNetGoogle Scholar
  67. Schoenberg, A. (1967). In G. Strang (Ed.), Fundamentals of Musical Composition. Faber & Faber, London.Google Scholar
  68. Sims, K. (1991). Artificial evolution for computer graphics. In Proceedings of the Siggraph '91. pp. 319–328.Google Scholar
  69. Sims, K. (1994). Evolving 3D morphology and behavior by competition. In R. Brooks and P. Maes (Eds.), Proceedings Artificial Life IV. MIT Press, Cambridge, MA, pp. 28–39.Google Scholar
  70. Singh, R.S. and Krimbas, C.B. (2000). Evolutionary Genetics: From Molecules to Morphology. Cambridge University Press, Cambridge.Google Scholar
  71. Straus, J.N. (1990). Remaking the Past. Harvard Press, Cambridge, MA.Google Scholar
  72. Todd, S. and Latham, W. (1992). Evolutionary Art and Computers. Academic Press, New York.zbMATHGoogle Scholar
  73. Turing, A.M. (1950). Computing machinery and intelligence. Mind LIX(236): 433–460.CrossRefMathSciNetGoogle Scholar
  74. Vose, M.D. (1999). The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge, MA.zbMATHGoogle Scholar
  75. Werner, G.M. and Todd, P.M. (1997). Too many love songs: Sexual selection and the evolution of communication. In P. Husbands and I. Harvey (Eds.), Fourth European Conference on Artificial Life. MIT Press/Bradford Books, Cambridge, MA, pp. 434–443.Google Scholar
  76. Werner, G. and Todd, P. (1998). Frankensteinian methods for evolutionary music composition. In N. Griffith and P. Todd (Eds.), Musical Networks: Parallel Distributed Perception and Performance. MIT Press/Bradford Books, Cambridge, MA, pp. 313–339.Google Scholar
  77. Wessel, D. and Wright, M. (2000). Problems and prospects for intimate musical control of computers. Computer Music Journal 26(3): 11–22.CrossRefGoogle Scholar
  78. Wiggins, G., Papadopoulos, G., Phon-Amnuaisuk, S. and Tuson, A. (1998). Evolutionary methods for musical composition. In Proceedings of the CASYS98 Workshop on Anticipation, Music and Cognition. Liege, Belgium. Available online at http://www.soi. city.ac.uk/-geraint/papers/CASYS98a.pdf.Google Scholar
  79. Winkler, T. (1991). Interactive signal processing for acoustic instruments. In Proceedings for the 1991 International Computer Music Conference. Computer Music Association, San Francisco, CA.Google Scholar
  80. Woolf, S. (1999). Sound Gallery: An Interactive Artificial Life Artwork. MSc Thesis, School of Cognitive and Computing Sciences, University of Sussex, UK.Google Scholar
  81. Wright, A.H;, Vose, M.D.; De Jong, K.A.;nd Schmitt, L.M. (Eds.) (2005). Foundations of Genetic Algorithms: 8th International Workshop, FOGA 2005. Lecture Notes in Computer Science, Vol. 3469, Springer, New York.Google Scholar
  82. Yee-King, M. (2000). AudioServe—An Online System to Evolve Modular Audio Synthesis Circuits. MSc Thesis, School of Cognitive and Computing Sciences, University of Sussex, UK.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • PHIL HUSBANDS
  • PETER COPLEY
  • ALICE ELDRIDGE
  • JAMES MANDELIS

There are no affiliations available

Personalised recommendations