Magnesium: Forgotten Mineral in Cardiovascular Biology and Atherogenesis

  • Burton M. Altura
  • Bella T. Altura

Abstract

In this review, a rationale is presented for how hypercholesterolemia, hypertension, diabetes mellitus (DM), end-stage renal disease (ESRD), prolonged stress, and exposure to magnesium (Mg)-wasting drugs can lead to atherosclerosis, ischemic heart disease, and stroke. The data, accumulated so far, indicate that Mg deficiency caused either by a poor diet or errors in Mg metabolism may be a missing link between diverse cardiovascular risk factors and atherogenesis. Early data from our laboratory and others indicate that reduction in extracellular free Mg ions can induce an entire array of pathophysiological phenomena known to be important in atherogenesis, that is, vasospasm, hypoxia, increased vascular reactivity, and elevation in intracellular calcium (Ca). More recent data has demonstrated molecular events, pointing the way to atherogenesis: that is, formation of pro-inflammatory agents, generation of free radicals, platelet aggregation, modulation of macrophage and leukocyte mobility, and emigration across the endothelial wall. Finally, oxidation of lipoproteins, changes in membrane fatty acid saturation, changes in membrane plasmalogens, and N-phospholipids suggest alterations in intracellular lipid signals. It has been shown that Mg deficiency can modulate membrane sphingomyelinase, generate vasoactive and pathogenic sphingolipids, which could alter multiple intracellular signaling pathways, modulate transcription factors, and thus cause intimal plaque formation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross R. Atherosclerosis: a defense mechanism gone awry. Am J Pathol 1993;143: 987–1001.PubMedGoogle Scholar
  2. 2.
    Schwartz SM, deBois D, O’Brien ERM. The Intima. Soil for atherosclerosis and restenosis. Circ Res 1995;77:445–465.PubMedGoogle Scholar
  3. 3.
    Altura BM, Altura BT. Role of magnesium in the pathogenesis of hypertension updated. In: Laragh JH, Brenner BM, eds. Hypertentension: Pathophysiology, Diagnosis and Management. 2nd ed. New York: Raven Press; 1995:1213–1242.Google Scholar
  4. 4.
    Seelig MS. Epidemiologic data on magnesium-deficiency-associated cardiovascular disease and osteoporosis. In: Rayssiguier Y, Mazur A, Durlach J, eds. Advances in Magnesium Research. Nutrition, and Health. London: John Libbey;2001:177–190.Google Scholar
  5. 5.
    Jeppesen BB. Greenland, a soft water area with a low incidence of ischemic heart death. Magnesium 1987;6:307.PubMedGoogle Scholar
  6. 6.
    Seelig MS. Magnesium Deficiency in the Pathogenesis of Disease. New York: Plenum Press; 1980.Google Scholar
  7. 7.
    Altura BM, Altura BT. Magnesium and cardiovascular diseases. In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Vol. 2. New York: Marcel Dekker; 1995:822–842.Google Scholar
  8. 8.
    Altura BM, Altura BT. Magnesium in cardiovascular biology. Sci Am Sci Med 1995;2:28–37.Google Scholar
  9. 9.
    Aikawa JK. Magnesium: Its Biological Significance. Boca Raton, FL: CRC Press;1981.Google Scholar
  10. 10.
    Altura BM, Altura BT. New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. I. Clin Magnes 1985;4:226–244.Google Scholar
  11. 11.
    Whang R. Magnesium deficiency. Am J Med 1987;82(suppl. 3A):24–29.PubMedCrossRefGoogle Scholar
  12. 12.
    Miyage H, Yasue H, Okumura K, Ogawa H, Goto K, Oshimia S. Effect of magnesium on anginal attack. Circulation 1989;79:597–602.Google Scholar
  13. 13.
    Gottlieb SS, Baruch L, Kukin ML, Bernstein JL, Fisher ML, Packer M. Prognostic importance of serum magnesium concentration in patients with congestive heart failure. J Am Coll Cardiol 1990;16:827–831.PubMedGoogle Scholar
  14. 14.
    Keller PK, Aronson RS. The role of magnesium in cardiac arrhythmias. Prog Cardiovasc Dis 1990;32:433–488.PubMedCrossRefGoogle Scholar
  15. 15.
    Millane TA, Jennison SH, Mann JM, Holt DW, McKenna WJ, Camm AJ. Myocardial magnesium depletion associated with prolonged hypomagnesemia. J Am Coll Cardiol 1992;20:806–812.PubMedCrossRefGoogle Scholar
  16. 16.
    Sheehan JP. Magnesium deficiency and diabetes mellitus. Magnes Trace Elem 1992;10:215–219.Google Scholar
  17. 17.
    Markell MS, Altura BT, Barbour RL, Altura BM. Ionized and total magnesium levels in cyclosporine-treated renal transplant recipients. Clin Sci 1993;85:315–318.PubMedGoogle Scholar
  18. 18.
    Markell MS, Altura BT, Sarn Y, Delany BG, Ifudo O, Friedman EA, Altura BM. Deficiency of serum ionized magnesium in patients receiving hemodialysis or peritoneal dialysis. ASAIO J 1993;39:M801–M804.PubMedCrossRefGoogle Scholar
  19. 19.
    Altura BT, Bertschat F, Jeremias A, Ising H, Altura BM. Comparative findings on serum IMg2+ of normal and diseased subjects with NOVA and KONE ISE’s for Mg2+. Scand J Clin Lab Invest 1994;54(suppl. 217):77–82.Google Scholar
  20. 20.
    Amighi J, Sabett S, Schlager O, et al. Low serum magnesium predicts neurological events in patients with advanced atherosclerosis. Stroke 2004;35:22–27.PubMedCrossRefGoogle Scholar
  21. 21.
    Tzankis I, Vividakis K, Tromi A, et al. Intra-and extracellular magnesium levels and atheromatosis in haemodialysis patients. Magnes Res 2004;17:102–108.Google Scholar
  22. 22.
    Shirey TL. Monitoring magnesium to guide magnesium therapy for heart surgery. J Anesth 2004;18:118–128.PubMedCrossRefGoogle Scholar
  23. 23.
    Altura BT, Altura BM. A method for distinguishing ionized, complexed and protein-bound Mg in normal and diseased subjects. Scand J Clin Lab Invest 1969;454(suppl. 217):83–87.Google Scholar
  24. 24.
    Altura BM. Importance of Mg in physiology and medicine and the need for ion selective electrodes. Scand J Clin Lab Invest 1994;54(suppl. 217):5–10.Google Scholar
  25. 25.
    Altura BM, Lewenstein A, eds. Unique magnesium-sensitive electrodes [special issue]. Scand J Clin Lab Invest 1994;54(suppl. 217):1–100.Google Scholar
  26. 26.
    Turlapaty PD, Altura BM. Magnesium deficiency produces spasms of coronary arteries. Science 1980;208:198–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Altura BT, Altura BM. Measurement of ionized magnesium in whole blood, plasma and serum with a new ion-selective electrode in healthy and diseased human subjects. Magnes Trace Elem 1991;10:90–98.PubMedGoogle Scholar
  28. 28.
    Altura BM, Altura BT. Influence of magnesium on drug-induced contraction and ion content in rabbit aorta. Am J Physiol 1971;220:938–944.PubMedGoogle Scholar
  29. 29.
    Altura BM, Altura BT. Magnesium and contraction of arterial smooth muscle. Microvasc Res 1974;7:145–155.PubMedCrossRefGoogle Scholar
  30. 30.
    Altura BM, Altura BT. Magnesium and vascular tone and reactivity. Blood Vessels 1978;25:5–16.CrossRefGoogle Scholar
  31. 31.
    Altura BM, Altura BT. Magnesium ions and contraction of vascular smooth muscle. Fed Proc 1981;40:2672–2679.PubMedGoogle Scholar
  32. 32.
    Altura BM, Altura BT. Magnesium, electrolyte transport and coronary vascular tone. Drugs 1984;28(suppl. 1):120–142.PubMedGoogle Scholar
  33. 33.
    Altura BM, Zhang A, Altura BT. Magnesium, hypertensive vascular diseases, atherogenesis, subcellular compartment of Ca2+ and Mg2+ and contractility. Miner Electrolyte Metab 1993;19:323–336.PubMedGoogle Scholar
  34. 34.
    Yang ZW, Gebrewold A, Novakowski M, et al. Mg2+-induced endothelialdependent relaxation of blood vessels and blood pressure lowering: role of NO. Am J Physiol Regul Integr Comp Physiol 2000;278:R628–R639.PubMedGoogle Scholar
  35. 35.
    Altura BM, Zhang A, Cheng TPO, et al. Extracellular magnesium regulates nuclear and perinuclear free ionized calcium in cerebral vascular smooth muscle. Alcohol 2001;23:83–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Tonkin A. Atherosclerosis and Heart Disease. London: Martin Dunitz; 2003.Google Scholar
  37. 37.
    Herman MP, Sukhova GK, Libby P, et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma. Circulation 2001;104:1899–1904.PubMedGoogle Scholar
  38. 38.
    Gallis ZS, Sukhova GK, Lark MN, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493–2503.Google Scholar
  39. 39.
    Schonbeck D, Libby P. Cytokines and growth regulatory factors. In: Fuster V, Topol EJ, Nabel EG, eds. Atherothrombosis and Coronary Artery Disease. 2nd ed. Philadelphia: Lippincott Williams & Willcins; 2005:547–559.Google Scholar
  40. 40.
    Freedman AM, Atrachi AH, Cassidy MM, Weglicki WB. Magnesium deficiencyinduced cardiomyopathy: protection by vitamin E. Biochem Biophys Res Commun 1990;170:1102–1106.PubMedCrossRefGoogle Scholar
  41. 41.
    Freedman AM, Cassidy MM, Weglicki WB. Captopril protects against myocardial injury by magnesium deficiency. Hypertension 1991;18:142–147.PubMedGoogle Scholar
  42. 42.
    Weglicki WB, Phillips TM, Freedman AM, et al. Magnesium deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem 1992;118:105–111.PubMedCrossRefGoogle Scholar
  43. 43.
    Maier JAM, Malpuech-Brugere C, Zimowska W, Rayssiguier Y, Mazur A. Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta 2004;689: 13–21.Google Scholar
  44. 44.
    Rayssiguier Y, Mazur A. Magnesium and inflammation: lessons from animal models. Clin Calcium 2005;15:245–248.PubMedGoogle Scholar
  45. 45.
    Cybulsky MI, Gimbrone MA Jr. Endothelial expression of mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991;251:788–791.PubMedCrossRefGoogle Scholar
  46. 46.
    Li H, Cybulsky MI, Gimbrone MA Jr., et al. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 1993;13:197–204.PubMedGoogle Scholar
  47. 47.
    Kuranstin-Mills J, Cassidy MM, Stafford RE, Weglicki WB. Marked alterations in circulating inflammatory cells during cardiomyopathy development in a magnesium-deficient rat model. Br J Nutr 1997;78:845–855.CrossRefGoogle Scholar
  48. 48.
    Malpuech-Brugere C, Novacki W, Daveau M, et al. Inflammatory response following acute magnesium deficiency in the rat. Biochim Biophys Acta 2000;1501: 91–98.PubMedGoogle Scholar
  49. 49.
    Altura BT, Bust M, Barbour RL, et al. Magnesium dietary intake modulates blood lipid levels and atherogenesis. Proc Natl Acad Sci U S A 1990;87:1840–1844.PubMedCrossRefGoogle Scholar
  50. 50.
    Weglicki WB, Kramer JH, Mak IT, et al. Pro-oxidant and pro-inflammatory neuropeptides in magnesium deficiency. In: Rayssiguier Y, Mazur A, Durlach J, eds. Advances in Magnesium Research: Nutrition and Health. London: John Libbey; 2001:285–289.Google Scholar
  51. 51.
    Weaver K. A possible anticoagulant effect of magnesium in preeclampsia. In: Cantin M, Seelig MS, eds. Magnesium in Health and Disease. Holliswood: Spectrum; 1980:833–838.Google Scholar
  52. 52.
    Nadler JL, Buchanan T, Natarajan R, et al. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 1993;21: 1024–1029.PubMedGoogle Scholar
  53. 53.
    Gawaz M, Reininger A, Neumann FJ. Platelet function and platelet-leukocyte adhesion in symptomatic coronary heart disease. Effects of intravenous magnesium. Thromb Res 1996;83:341–349.PubMedCrossRefGoogle Scholar
  54. 54.
    Rishi M, Ahmad A, Makheja A, et al. Effects of reduced dietary magnesium on platelet production in hamsters. Lab Invest 1990;63:717–721.PubMedGoogle Scholar
  55. 55.
    Stamler JS, Osborne JA, Jaraki O, et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 1993;91:308–318.PubMedGoogle Scholar
  56. 56.
    Wrenn RW, Raeber CV, Herman LE, et al. Transforming growth factor-beta. In Vitro Cell Dev Biol Anim 1993;29:73–78.Google Scholar
  57. 57.
    Dalton ML, Gadson RF, Robert JR, et al. Homocysteine signal cascade production of phospholipids, activation of protein kinase C and induction of c-fos and c-myb in smooth muscle cells. FASEB J 1997;11:703–711.PubMedGoogle Scholar
  58. 58.
    Kang SS, Zhou J, Wong PWK, et al. Intermediate homocystenemia: a thermolabile variant of methylene-tetrahydrofolate reductase deficiency. Pediatr Res 1988;43: 414–421.Google Scholar
  59. 59.
    McKully KS. Vascular pathology of homocystenemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969;56:111–128.Google Scholar
  60. 60.
    Li W, Zheng T, Wang J, et al. Extracellular magnesium regulates effects of vitamin B6, B12 and folate in homocystenemia-induced depletion of intracellular free magnesium ions. Neurosci Lett 1999;274:83–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Guo H, Lee JD, Uzui H, et al. Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells. Circ J 2006;70:141–146.PubMedCrossRefGoogle Scholar
  62. 62.
    Yang ZW, Zheng T, Zhang A, et al. Mechanism of hydrogen peroxide-induced contraction of rat aorta. Eur J Pharmacol 1998;344:169–181.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang ZW, Zheng T, Wang J, et al. Hydrogen peroxide induces contratction and rises in [Ca2 ]I in canine cerebral arterial smooth muscle. N S Arch Pharmacol 1999;360:646–653.CrossRefGoogle Scholar
  64. 64.
    Bharadwaj LA, Prasad K. Mechanism of hydroxyl radical-induced modulation of vascular tone. Free Radic Biol Med 1997;22:381–390.PubMedCrossRefGoogle Scholar
  65. 65.
    Shen JZ, Zheng XF, Kwan CY. Differential contractile actions of reactive oxygen species on rat aorta. Life Sci 2000;66:PL291–PL296.PubMedCrossRefGoogle Scholar
  66. 66.
    Li J, Li W, Liu W, et al. Mechanisms of hydroxyl radical-induced contraction of rat aorta. Eur J Pharmacol 2004;499:171–178.PubMedCrossRefGoogle Scholar
  67. 67.
    Brown MS, Goldstein JL. Receptor-mediated control of cholesterol metabolism. Science 1976;191:150–154.PubMedCrossRefGoogle Scholar
  68. 68.
    Goldstein JL, Ho YK, Basu SK, et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979;76:333–337.PubMedCrossRefGoogle Scholar
  69. 69.
    Rosen GM, Freeman BA. Detection of superoxide generated by endothelial cells. Proc Natl Acad Sci U S A 1984;81:7269–7273.PubMedCrossRefGoogle Scholar
  70. 70.
    Daugherty A, Dunn JL, Ratery DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation is expressed in human arteriosclerotic lesions. J Clin Invest 1994;94:437–444.PubMedGoogle Scholar
  71. 71.
    Savenkova ML, Mueller DM, Heinecke JW. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. J Biol Chem 1994;269:20394–20400.PubMedGoogle Scholar
  72. 72.
    Rayssiguier Y, Gueux E, Bussiere L, et al. Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. J Am Coll Nutr 1993;12:133–137.PubMedGoogle Scholar
  73. 73.
    Rock E, Astier C, Laub C, et al. Dietary magnesium deficiency in rats enhances free radical production in skeletal muscle. J Nutr 1995;195:1205–1210.Google Scholar
  74. 74.
    Malpuech-Brugere C, Kurysko J, Nowacki W, et al. Early morphological and immunological alteration in the spleen during magnesium deficiency in the rat. Magnes Res 1998;11:161–169.PubMedGoogle Scholar
  75. 75.
    Bussiere F, Tridon A, Malpuech-Brugere C, et al. Effect of magnesium on the production of reactive oxygen species by neutrophils. Magnes Res 2000;13:81.Google Scholar
  76. 76.
    Dickens BF, Weglicki WB, Li S, Mak IT. Magnesium deficiency in-vitro enhances free-radical intracellular oxidation and cytotoxicity in endothelial cells. FEBS Lett 1992;311:187–191.PubMedCrossRefGoogle Scholar
  77. 77.
    Altura BM, Kostellow AB, Zheng A, et al. Expression of the nuclear factor-KB and proto-oncogenes c-fos and c-jun are induced by low extracellular Mg2+ in aortic and cerebral vascular smooth muscle cells. Am J Hypertens 2003;16: 701–707.PubMedCrossRefGoogle Scholar
  78. 78.
    Touyz RM, Pu Q, Chen Y, et al. Effects of low dietary magnesium intake on development of hypertension in stroke-prone spontaneously hypertensive rats. J Hypertens 2002;11:2141–2143.Google Scholar
  79. 79.
    Sherer Y, Bitzur R, Cohen H, et al. Mechanisms of action of the antiatherogenic effect of magnesium: lessons from a mouse model. Magnes Res 2001;14:173–179.PubMedGoogle Scholar
  80. 80.
    Laurant P, Hayoz D, Brunner HR, Berthelot A. Effect of magnesium deficiency on blood pressure and mechanical properties of rat carotid artery. Hypertension 1999;29:1199–1203.Google Scholar
  81. 81.
    Gunther T, Vormann J, Foster RM. Effect of low oxygen free radicals on Mg2+ efflux from erythrocytes. Eur J Clin Chem Clin Biochem 1994;32:273–277.PubMedGoogle Scholar
  82. 82.
    Wu F, Altura BT, Gao J, et al. Ferrylmyoglobin formation induced by magnesium deficiency in perfused rat heart causes cardiac failure. Biochim Biophys Acta Mol Dis 1994;1225:158–164.Google Scholar
  83. 83.
    Giulivi C, Romero FJ, Cardenas E. The interaction of trolox c, a water-soluble vitamin E analog, with ferrylmyoglobin: reduction of the oxyferryl moiety. Arch Biochem 1992;299:302–312.PubMedCrossRefGoogle Scholar
  84. 84.
    Grisham MB. Myoglobin-catalyzed hydrogen peroxide-dependent arachidonic acid peroxidation. J Free Radic Biol Med 1985;1:227–232.PubMedCrossRefGoogle Scholar
  85. 85.
    Whitburn KD. The interaction of oxymyoglobin with hydrogen peroxide. Arch Biochem Biophys 1987;277:314–321.Google Scholar
  86. 86.
    Rice-Evans C, Okunada G, Kahn R. The suppression of iron release from activated myoglobin by physiological electron donors and by desferrioxamine. Free Radic Res Commun 1989;7:45–54.PubMedGoogle Scholar
  87. 87.
    Davies MJ, Garlick PB, Slater TF, Hearse DT. In: Rice-Evans C, Dormandy T, eds. Free Radicals, Chemistry, Pathology and Medicine. New York: Richelieu Press;1988:303–319.Google Scholar
  88. 88.
    Puppo A, Halliwell B. Formation of hydroxyl radicals in biological systems. Free Radic Res Commun 1988;4:415–422.PubMedGoogle Scholar
  89. 89.
    Galaris D, Savarian A, Cadenas E, Hochstein P. Ferrylmyoglobin-catalyzed linoleic acid peroxidation. Arch Biochem Biophys 1990;281:163–169.PubMedCrossRefGoogle Scholar
  90. 90.
    Cohen H, Sherer Y, Shaish A, et al. Atherogenesis inhibition induced by magnesium-chloride fortification of drinking water. Biol Trace Elem Res 2002;90: 251–259.PubMedCrossRefGoogle Scholar
  91. 91.
    Yang ZW, Altura BT, Altura BM. Low extracellular magnesium contraction of arterial smooth muscle: role of protein kinase C and protein tyrosine phosphorylation. Eur J Pharmacol 1999;378:273–281.PubMedCrossRefGoogle Scholar
  92. 92.
    Yang ZW, Wang J, Altura BT, et al. Extracellular magnesium deficiency induces contraction of arterial smooth muscle: role of P-I-3 kinases and MAPK signaling pathways. Pflugers Arch 2000;439:240–247.PubMedCrossRefGoogle Scholar
  93. 93.
    Yang ZW, Wang J, Zheng T, et al. Low extracellular magnesium induces contraction and [Ca2 ]i rises in cerebral arteries. Am J Physiol Heart Circ Physiol 2000;279:H2898–H2407.PubMedGoogle Scholar
  94. 94.
    Yang ZW, Wang J, Zheng T, et al. Low extracellular magnesium induces contraction of cerebral arteries: role of tyrosine and mitogen-activated protein kinases. Am J Physiol Heart Circ Physiol 2000;279:H185–H194.PubMedGoogle Scholar
  95. 95.
    Laurant P, Touyz RM. Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. J Hypertens 2000;18: 1177–1191.PubMedCrossRefGoogle Scholar
  96. 96.
    He Y, Yao G, Savoia C, Touyz RM. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells. Circ Res 2005;96:207–215.PubMedCrossRefGoogle Scholar
  97. 97.
    Bernardini D, Nasulewicz A, Mazur A, Maier JAM. Magnesium and microvascular endothelial cells: a role in inflammation and angiogenesis. Front Biosci 2005;10:1177–1182.PubMedGoogle Scholar
  98. 98.
    Brautbar N, Altura BM. Hypophosphatemia and hypomagnesemia result in cardiovascular dysfunction. Alcohol Clin Exp Res 1987;11:118–126.PubMedCrossRefGoogle Scholar
  99. 99.
    Nahorski SR, Wilcox RA, Mackrill JJ, et al. Phosphoinositide-derived second messengers and the regulation of Ca2+ in vascular smooth muscle. J Hypertens 1994;12:1024–1029.Google Scholar
  100. 100.
    Morrill GA, Gupta RK, Kostellow AB, et al. Mg2+ modulates membrane lipids in vascular smooth muscle: a link to atherogenesis. FEBS Lett 1997;408:191–194.PubMedCrossRefGoogle Scholar
  101. 101.
    Horrocks LA, Sharma M. In: New Comprehensive Biochemistry. Vol. 4. Amsterdam: Elsevier; 1982:51–93.Google Scholar
  102. 102.
    Zimmerman GA, Prescott SM, McIntyre TM. Oxidatively fragmented phospholipids as inflammatory mediators: the dark side of polyunsaturated lipids. J Nutr 1995;125(suppl. 6):1661s–1665s.PubMedGoogle Scholar
  103. 103.
    Heery JM, Kozak M, Stafforini DM, et al. Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity. J Clin Invest 1995;96: 2322–2330.PubMedCrossRefGoogle Scholar
  104. 104.
    Schissel SL, Tweedie-Hardman J, Rapp JH, et al. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingolyelin of retained low-density lipoprotein. J Clin Invest 1996;98:1455–1464.PubMedGoogle Scholar
  105. 105.
    Bolin DJ, Jonas A. Sphingomyelin inhibits the lecithin-cholesterol acyltransferase reaction with reconstituted high-density lipoproteins by decreasing enzyme binding. J Biol Chem 1996;271:19152–19158.PubMedCrossRefGoogle Scholar
  106. 106.
    Arimoto I, Saito H, Kawashima Y, et al. Effects of sphingomyelin and cholesterol on lipoprotein lipase-mediated lipolysis in lipid emulsions. J Lipid Res 1998;39:143–151.PubMedGoogle Scholar
  107. 107.
    Maceyka M, Payne SC, Milstein S, et al. Sphingosine kinase,sphingosine-1-phosphate,and apoptosis. Biochim Biophys Acta 2002;1585:193–201.PubMedGoogle Scholar
  108. 108.
    Zheng T, Li W, Wang J, et al. Sphyngomyelinase and ceramide analogs induce contraction and rises of [Ca2 ]I in canine cerebral vascular smooth muscle. Am J Physiol Heart Circ Physiol 2002;278:H1421–H1428.Google Scholar
  109. 109.
    Bischoff A, Czyborra P, Fetscher C, et al. Sphingosine-1-phosphate and sphingosylphosphoryl-choline constrict renal and mesenteric microvessels in vitro. Br J Pharmacol 2000;130:1871–1877.PubMedCrossRefGoogle Scholar
  110. 110.
    Todoroki-Ikeda N, Mizukami Y, Mogami K, et al. Sphingosylphosphorylcholine induces Ca2-sensitization of vascular smooth muscle contraction: possible involvement of rho-kinase. FEBS Lett 2000;482:85–90.PubMedCrossRefGoogle Scholar
  111. 111.
    Altura BM, Gebrewold A, Zheng T, et al. Sphingo-myelinase and ceramide analogs induce vasoconstriction and leukocyte-endothelial interactions in cerebral venules in intact rat brain. Brain Res Bull 2002;58:271–278.PubMedCrossRefGoogle Scholar
  112. 112.
    Morrill GA, Gupta RK, Kostellow AB, et al. Mg2+ modulates membrane sphingolipid and lipid second messenger in vascular smooth muscle cells. FEBS Lett 1998;440:167–171.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Burton M. Altura
    • 1
  • Bella T. Altura
    • 2
  1. 1.Physiology and Pharmacology, and MedicineState University of New York Downstate Medical CenterBrooklynUSA
  2. 2.Physiology and Pharmacology, and MedicineState University of New York Downstate Medical CenterBrooklynUSA

Personalised recommendations